scholarly journals Assessment of Mercury Concentrations and Fluxes Deposited from the Atmosphere on the Territory of the Yamal-Nenets Autonomous Area

Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Stella Eyrikh ◽  
Liliya Shol ◽  
Elena Shinkaruk

The problem of mercury input and its further distribution in the Arctic environment is actively debated, especially in recent times, due to the observed processes of permafrost thawing causing the enhanced release of mercury into the Arctic atmosphere and further distribution in the terrestrial and aquatic ecosystem. The atmospheric mercury deposition occurs via dry deposition and wet scavenging by precipitation events. Here we present a study of Hg in wet precipitation on the remote territory of the Russian Arctic; the data were obtained at the monitoring stations Nadym and Salekhard in 2016–2018. Mercury pollution of the Salekhard atmosphere in cold time is mainly determined by regional and local sources, while in Nadym, long-range transport of mercury and local fuel combustion are the main sources of pollutants in the cold season, while internal regional sources have a greater impact on the warm season. Total mercury concentrations in wet precipitation in Nadym varied from <0.5 to 63.3 ng/L. The highest Hg concentrations in the springtime were most likely attributed to atmospheric mercury depletion events (AMDE). The contributions of wet atmospheric precipitation during the AMDE period to the annual Hg deposition were 16.7% and 9.8% in 2016/2017 and 2017/2018, respectively. The average annual volume-weighted Hg concentration (VWC) in the atmospheric precipitation in Nadym is notably higher than the values reported for the remote regions in the Arctic and comparable with the values obtained for the other urbanized regions of the world. Annual Hg fluxes in Nadym are nevertheless close to the average annual fluxes for remote territories of the Arctic zone and significantly lower than the annual fluxes reported for unpolluted sites of continental-scale monitoring networks of the different parts of the world (USA, Europe, and China). The increase of Hg deposition flux with wet precipitation in Nadym in 2018 might be caused by regional emissions of gas and oil combustion, wildfires, and Hg re-emission from soils due to the rising air temperature. The 37 cm increase of the seasonally thawed layer (STL) in 2018 compared to the 10-year average reflects that the climatic changes in the Nadym region might increase Hg(0) evasion, considering a great pool of Hg is contained in permafrost.

2010 ◽  
Vol 10 (24) ◽  
pp. 12037-12057 ◽  
Author(s):  
C. D. Holmes ◽  
D. J. Jacob ◽  
E. S. Corbitt ◽  
J. Mao ◽  
X. Yang ◽  
...  

Abstract. Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O3 model does. Vertical profiles measured from aircraft show a decline of Hg0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans.


2008 ◽  
Vol 5 (2) ◽  
pp. 87 ◽  
Author(s):  
Ralf Ebinghaus

Environmental context. Mercury has unique physico-chemical characteristics that include long-range atmospheric transport, transformation into highly toxic methylmercury species, and the bioaccumulation of these compounds, especially in the marine environment. This has motivated intense international research on mercury as a pollutant of global concern. With respect to Polar regions, scientific interest and research activities were even accelerated after the discovery of the so-called atmospheric mercury depletion events (AMDEs), which are supposed to lead to enhanced mercury deposition flux into these pristine environments in the ecologically very sensitive period in polar spring.


2010 ◽  
Vol 10 (8) ◽  
pp. 19845-19900 ◽  
Author(s):  
C. D. Holmes ◽  
D. J. Jacob ◽  
E. S. Corbitt ◽  
J. Mao ◽  
X. Yang ◽  
...  

Abstract. Global models of atmospheric mercury generally assume that OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming Br to be the sole Hg0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency but the Hg + Br model is unable to capture the summer maximum over the southeast US because of low subtropical Br concentrations. Vertical profiles measured from aircraft show a decline of Hg0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in much larger fraction of mercury deposited to the Southern Hemisphere oceans.


2014 ◽  
Vol 14 (5) ◽  
pp. 2233-2244 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
R. Talbot ◽  
H. Mao ◽  
X. Yang ◽  
...  

Abstract. A comprehensive measurement study of mercury wet deposition and size-fractionated particulate mercury (HgP) concurrent with meteorological variables was conducted from June 2011 to February 2012 to evaluate the characteristics of mercury deposition and particulate mercury in urban Nanjing, China. The volume-weighted mean (VWM) concentration of mercury in rainwater was 52.9 ng L−1 with a range of 46.3–63.6 ng L−1. The wet deposition per unit area was averaged 56.5 μg m−2 over 9 months, which was lower than that in most Chinese cities, but much higher than annual deposition in urban North America and Japan. The wet deposition flux exhibited obvious seasonal variation strongly linked with the amount of precipitation. Wet deposition in summer contributed more than 80% to the total amount. A part of contribution to wet deposition of mercury from anthropogenic sources was evidenced by the association between wet deposition and sulfates, as well as nitrates in rainwater. The ions correlated most significantly with mercury were formate, calcium, and potassium, which suggested that natural sources including vegetation and resuspended soil should be considered as an important factor to affect the wet deposition of mercury in Nanjing. The average HgP concentration was 1.10 ± 0.57 ng m−3. A distinct seasonal distribution of HgP concentrations was found to be higher in winter as a result of an increase in the PM10 concentration. Overall, more than half of the HgP existed in the particle size range less than 2.1 μm. The highest concentration of HgP in coarse particles was observed in summer, while HgP in fine particles dominated in fall and winter. The size distribution of averaged mercury content in particulates was bimodal, with two peaks in the bins of < 0.7 μm and 4.7–5.8 μm. Dry deposition per unit area of HgP was estimated to be 47.2 μg m−2 using meteorological conditions and a size-resolved particle dry deposition model. This was 16.5% less than mercury wet deposition. Compared to HgP in fine particles, HgP in coarse particles contributed more to the total dry deposition due to higher deposition velocities. Negative correlation between precipitation and the HgP concentration reflected the effect of scavenging of HgP by precipitation.


2013 ◽  
Vol 13 (14) ◽  
pp. 7007-7021 ◽  
Author(s):  
A. Steffen ◽  
J. Bottenheim ◽  
A. Cole ◽  
T. A. Douglas ◽  
R. Ebinghaus ◽  
...  

Abstract. Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (PHg) were collected on the Beaufort Sea ice near Barrow, Alaska, in March 2009 as part of the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) and OASIS-Canada International Polar Year programmes. These results represent the first atmospheric mercury speciation measurements collected on the sea ice. Concentrations of PHg averaged 393.5 pg m−3 (range 47.1–900.1 pg m−3) and RGM concentrations averaged 30.1 pg m−3 (range 3.5–105.4 pg m−3) during the two-week-long study. The mean concentration of GEM during the study was 0.59 ng m−3 (range 0.01–1.51 ng m−3) and was depleted compared to annual Arctic ambient boundary layer concentrations. It is shown that when ozone (O3) and bromine oxide (BrO) chemistry were active there is a positive linear relationship between GEM and O3, a negative one between PHg and O3, a positive correlation between RGM and BrO, and none between RGM and O3. For the first time, GEM was measured simultaneously over the tundra and the sea ice. The results show a significant difference in the magnitude of the emission of GEM from the two locations, with significantly higher emission over the tundra. Elevated chloride levels in snow over sea ice are proposed to be the cause of lower GEM emissions over the sea ice because chloride has been shown to suppress photoreduction processes of RGM to GEM in snow. Since the snowpack on sea ice retains more mercury than inland snow, current models of the Arctic mercury cycle may greatly underestimate atmospheric deposition fluxes because they are based predominantly on land-based measurements. Land-based measurements of atmospheric mercury deposition may also underestimate the impacts of sea ice changes on the mercury cycle in the Arctic. The predicted changes in sea ice conditions and a more saline future snowpack in the Arctic could enhance retention of atmospherically deposited mercury and increase the amount of mercury entering the Arctic Ocean and coastal ecosystems.


2013 ◽  
Vol 13 (11) ◽  
pp. 28309-28341 ◽  
Author(s):  
J. Zhu ◽  
T. Wang ◽  
R. Talbot ◽  
H. Mao ◽  
X. Yang ◽  
...  

Abstract. A comprehensive measurement study of mercury wet deposition and size-fractioned particulate mercury (HgP) concurrent with meteorological variables was conducted from June 2011 to February 2012 to evaluate the characteristics of mercury deposition and particulate mercury in urban Nanjing, China. The volume weighted mean (VWM) concentration of mercury in rainwater was 52.9 ng L−1 with a range of 46.3–63.6 ng L−1. The wet deposition per unit area was averaged 56.5 μg m−2 over 9 months, which was lower than that in most Chinese cities, but much higher than annual deposition in urban America and Japan. The wet deposition flux exhibited obvious seasonal variation strongly linked with the amount of precipitation. Wet deposition in summer contributed more than 80% to the total amount. A part of contribution to wet deposition of mercury from anthropogenic sources was evidenced by the association between wet deposition and sulfates, and nitrates in rainwater. The ions correlated most significantly with mercury were formate, calcium and potassium, which suggested that natural sources including vegetation and resuspended soil should be considered as an important factor to affect the wet deposition of mercury in Nanjing. The average HgP concentration was 1.10 ± 0.57 ng m−3. A distinct seasonal distribution of HgP concentrations was found to be higher in winter as a result of an increase in the PM10 concentration. Overall, more than half of HgP existed in the particle size range less than 2.1 μm. The highest concentration of HgP in coarse particles was observed in summer while HgP in fine particles dominated in fall and winter. The size distribution of averaged mercury content in particulates was bimodal with two peaks in the bins of <0.7 μm and 4.7–5.8 μm. Dry deposition per unit area of HgP was estimated to be 47.2 μg m−2 using meteorological conditions and a size-resolved particle dry deposition model. This was 16.5% less than mercury wet deposition. Compared to HgP in fine particles, HgP in coarse particles contributed more to the total dry deposition due to higher deposition velocities. Negative correlation between precipitation and the HgP concentration reflected the effect of scavenging of HgP by precipitation.


2021 ◽  
Author(s):  
Thomas Douglas ◽  
Joel Blum

Springtime atmospheric mercury depletion events (AMDEs) lead to snow with elevated mercury concentrations (>200 ng Hg/L) in the Arctic and Antarctic. During AMDEs gaseous elemental mercury (GEM) is photochemically oxidized by halogens to reactive gaseous mercury which is deposited to the snowpack. This reactive mercury is either photochemically reduced back to GEM and reemitted to the atmosphere or remains in the snowpack until spring snowmelt. GEM is also deposited to the snowpack and tundra vegetation by reactive surface uptake (dry deposition) from the atmosphere. There is little consensus on the proportion of AMDE-sourced Hg versus Hg from dry deposition that is released in spring runoff. We used mercury stable isotope measurements of GEM, snowfall, snowpack, snowmelt, surface water, vegetation, and peat from a northern Alaska coastal watershed to quantify Hg sources. Although high Hg concentrations are deposited to the snowpack during AMDEs, we estimate that ∼76 to 91% is released back to the atmosphere prior to snowmelt. Mercury deposited to the snowpack as GEM comprises the majority of snowmelt Hg and has a Hg stable isotope composition similar to Hg deposited by reactive surface uptake of GEM into the leaves of trees in temperate forests. This GEM-sourced Hg is the dominant Hg we measured in the spring snowpack and in tundra peat permafrost deposits.


2016 ◽  
Vol 16 (12) ◽  
pp. 7653-7662 ◽  
Author(s):  
Jin-Su Han ◽  
Yong-Seok Seo ◽  
Moon-Kyung Kim ◽  
Thomas M. Holsen ◽  
Seung-Muk Yi

Abstract. In this study, mercury (Hg) was sampled weekly in dry and wet deposition and throughfall and monthly in litterfall, and as it was volatilized from soil from August 2008 to February 2010 to identify the factors influencing the amount of atmospheric Hg deposited to forested areas in a temperate deciduous forest in South Korea. For this location there was no significant correlation between the estimated monthly dry deposition flux (litterfall + throughfall – wet deposition) (6.7 µg m−2 yr−1) and directly measured dry deposition (9.9 µg m−2 yr−1) likely due primarily to Hg losses from the litterfall collector. Dry deposition fluxes in cold seasons (fall and winter) were lower than in warmer seasons (spring and summer). The volume-weighted mean (VWM) Hg concentrations in both precipitation and throughfall were highest in winter, likely due to increased scavenging by snow events. Since South Korea experiences abundant rainfall in summer, VWM Hg concentrations in summer were lower than in other seasons. Litterfall fluxes were highest in the late fall to early winter, when leaves were dropped from the trees (September to November). The cumulative annual Hg emission flux from soil was 6.8 µg m−2 yr−1. Based on these data, the yearly deposition fluxes of Hg calculated using two input approaches (wet deposition + dry deposition or throughfall + litterfall) were 6.8 and 3.6 µg m−2 yr−1, respectively. This is the first reported study which measured the amount of atmospheric Hg deposited to forested areas in South Korea, and thus our results provide useful information to compare against data related to Hg fate and transport in this part of the world.


2013 ◽  
Vol 13 (3) ◽  
pp. 5687-5728 ◽  
Author(s):  
A. Steffen ◽  
J. Bottenheim ◽  
A. Cole ◽  
T. A. Douglas ◽  
R. Ebinghaus ◽  
...  

Abstract. Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (PHg) were collected on sea ice near open leads in the Beaufort Sea near Barrow, Alaska in March 2009 as part of the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) International Polar Year Program. These results represent the first atmospheric mercury speciation measurements collected on the sea ice. Concentrations of PHg over the sea ice averaged 393.5 pg m−3 (range 47.1–900.1 pg m−3) during the two week long study. RGM concentrations averaged 30.1 pg m−3 (range 3.5–105.4 pg m−3). The mean GEM concentration of 0.59 ng m−3 during the entire study (range 0.01–1.51 ng m−3) was depleted compared to annual Arctic ambient boundary layer concentrations. It was shown that when ozone (O3) and bromine oxide (BrO) chemistry are active there is a~linear relationship between GEM, PHg and O3 but there was no correlation between RGM and O3. There was a linear relationship between RGM and BrO and our results suggest that the origin and age of air masses play a role in determining this relationship. These results were the first direct measurements of these atmospheric components over the sea ice. For the first time, GEM was measured simultaneously over the tundra and the sea ice. The results show a significant difference in the magnitude of the emission of GEM from the two locations where significantly higher emission occurs over the tundra. Elevated chloride levels in snow over sea ice are believed to be the cause of lower GEM emissions over the sea ice because chloride has been shown to suppress photoreduction processes of Hg(II) to Hg(0) (GEM) in snow. These results are important because while GEM is emitted after depletion events on snow inland, less GEM is emitted over sea ice. Since the snow pack on sea ice retains more mercury than inland snow current models of the Arctic mercury cycle, which are based predominantly on land based measurements, may greatly underestimate atmospheric deposition fluxes. Land based measurements of atmospheric mercury deposition may also underestimate the impacts of sea ice changes on the mercury cycle in the Arctic. The findings reported in this study improve the current understanding of mercury cycling in the changing Arctic. The predicted changes in sea ice conditions and a~more saline snow pack in the Arctic could lead to even greater retention of atmospherically deposited mercury in the future. This could severely impact the amount of mercury entering the Arctic Ocean and coastal ecosystems.


Sign in / Sign up

Export Citation Format

Share Document