scholarly journals Size Distribution, Bioaccessibility and Health Risks of Indoor/Outdoor Airborne Toxic Elements Collected from School Office Room

Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 340 ◽  
Author(s):  
Zhi-Jie Tang ◽  
Xin Hu ◽  
Jun-Qin Qiao ◽  
Hong-Zhen Lian

20 sets of indoor and outdoor size-segregated aerosol (SSA) samples (180 foils) were collected synchronously by using two 8 Stage Non-Viable Cascade Impactor from an office room in the central region of the megacity-Nanjing, China in winter and spring in 2016. The mass size distribution of SSAs was bimodal for outdoor SSAs and unimodal for indoor in both winter and spring. The crustal elements, such as K, Ca, Mg and Fe, were mainly distributed in the coarse fractions of SSAs while toxic elements such as As, Cd, Pb and Sb were enriched more in the fine fractions in both winter and spring. Moreover, indoor/outdoor (I/O) concentration ratios of SSAs and inorganic elements indicated the penetration of outdoor fine fractions of SSAs into indoor air. As, Pb, V and Mn showed higher inhalation bioaccessibility extracted by the artificial lysosomal fluid (ALF); while V, As, Sr and Cd showed higher inhalation bioaccessibility using the simulated lung fluid (SLF), suggesting differences in elemental inhalation bioaccessibility between ALF and SLF extraction. There were similar potential carcinogenic and accumulative non-carcinogenic risks via inhalation exposure to indoor and outdoor particle-bound toxic elements based on their bioaccessible concentrations. Therefore, the potential health risks to human posed by toxic elements in office rooms cannot be neglected via inhalation exposure of the fine airborne particles.

Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 519
Author(s):  
Trinh Dinh Tran ◽  
Phuong Minh Nguyen ◽  
Dung Trung Nghiem ◽  
Tuyen Huu Le ◽  
Minh Binh Tu ◽  
...  

Indoor and outdoor ultrafine, accumulation mode, and coarse fractions collected at two preschools (S1 and S2) in Hanoi capital, Vietnam were characterized in terms of mass-size distribution and elemental composition to identify major emission sources. The sampling campaigns were performed simultaneously indoors and outdoors over four consecutive weeks at each school. Indoor average concentrations of CO2 and CO at both schools were below the limit values recommended by American Society of Heating, Refrigerating and Air-Conditioning Engineers (1000 ppm for CO2) and World Health Organization (7 mg/m3 for CO). Indoor concentrations of PM2.5 and PM10 at S1 and S2 were strongly influenced by the presence of children and their activities indoors. The indoor average concentrations of PM2.5 and PM10 were 49.4 µg/m3 and 59.7 µg/m3 at S1, while those values at S2 were 7.9 and 10.8 µg/m3, respectively. Mass-size distribution of indoor and outdoor particles presented similar patterns, in which ultrafine particles accounted for around 15–20% wt/wt while fine particles (PM2.5) made up almost 80% wt/wt of PM10. PM2.5–10 did not display regular shapes while smaller factions tended to aggregate to form clusters with fine structures. Oxygen (O) was the most abundant element in all fractions, followed by carbon (C) for indoor and outdoor particles. O accounted for 36.2% (PM0.5–1) to 42.4% wt/wt (PM0.1) of indoor particles, while those figures for C were in the range of 14.5% (for PM0.1) to 18.1% (for PM1–2.5). Apart from O and C, mass proportion of other major and minor elements (Al, Ca, Cr, Fe , K, Mg, Si, Ti) could make up to 50%, whereas trace elements (As, Bi, Cd, Co, Cr, Cu, La, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, and Zn) accounted for less than 0.5% of indoor and outdoor airborne particles. There were no significant indoor emission sources of trace and minor elements. Traffic significantly contributed to major and trace elements at S1 and S2.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Minbale Aschale ◽  
Yilma Sileshi ◽  
Mary Kelly-Quinn

Abstract Background Vegetables grown at contaminated sites can take up and accumulate toxic and potentially toxic elements at concentrations that are toxic to human health. The present study determined the levels of potentially toxic elements/PTEs in irrigation water, soil and vegetable samples grown along contaminated river and assessed the potential health risks to consumers. Results The average concentrations of Mn, Sr and Cr in the irrigation water were higher than the international guideline values. The levels of As, Cr, B and Ni in most of the farm soils were also found to be higher than the guideline values. Other PTEs, although not exceeding the recommended limits were relatively high in the soil and water samples. The study also revealed that the mean levels of Cr, Cd and Fe in most vegetables were higher than the maximum recommended limits. Swiss chard was maximally contaminated with PTEs followed by lettuce, cabbage, Ethiopian kale, carrot and potato. Hence, frequent consumption of lettuce and Swiss chard may cause serious health risks to consumers. Conclusion The levels of many elements were varied with location, suggesting localized inputs of the various contaminants related to industrial and other activities that generate wastewater.


2021 ◽  
Vol 5 (2) ◽  
pp. e202101246
Author(s):  
Carolina Esquer ◽  
Oscar Echeagaray ◽  
Fareheh Firouzi ◽  
Clarissa Savko ◽  
Grant Shain ◽  
...  

Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.


Chemosphere ◽  
2021 ◽  
pp. 130303
Author(s):  
Ines TOMAŠEK ◽  
David E. DAMBY ◽  
Carol STEWART ◽  
Claire J. HORWELL ◽  
Geoff PLUMLEE ◽  
...  

2021 ◽  
pp. 117454
Author(s):  
Yanyang Wang ◽  
Baoshuang Liu ◽  
Yufen Zhang ◽  
Qili Dai ◽  
Congbo Song ◽  
...  

2021 ◽  
Author(s):  
Carolina Esquer ◽  
Oscar Echeagaray ◽  
Fareheh Firouzi ◽  
Clarissa Savko ◽  
Grant Shain ◽  
...  

AbstractVaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults there is little information on long term consequences of vaping and potential health risks. This study demonstrates Vaping-Induced Pulmonary Injury (VAPI) using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 weeks of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac contractile performance for systemic output is moderately but significantly impaired, and the shows severe pulmonary side structural remodeling with chamber enlargement. This VAPI model with pulmonary circuit failure demonstrates mechanistic underpinnings of vaping-related pathologic injury.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 940
Author(s):  
Linda Rubinstein ◽  
Amber M. Paul ◽  
Charles Houseman ◽  
Metadel Abegaz ◽  
Steffy Tabares Ruiz ◽  
...  

Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Barbara Kozielska ◽  
Dorota Kaleta

Indoor air contamination in office rooms is regarded as one of the most important issues in the protection of workers’ health, because contaminants, even those occurring at low concentrations, can cause health problems for the office staff in view of the long exposure time. This paper presents the results of measurements of benzene and its alkyl derivatives (toluene, ethylbenzene, xylenes, styrene, and 1,3,5-trimethylbenzene)—known indicators of human exposure to volatile organic compounds (VOCs) in the air in newly renovated offices at University of Technology (Upper Silesia, Poland). Monthly samples of indoor and outdoor air were collected during the years 2018–2019 by passive methods and analyzed by thermal desorption-gas chromatography with flame ionization detector (TD-GC/FID). In the first month of measurements average concentrations of the sum of five VOCs under consideration was 127.7 µg/m3, then in subsequent months between 15.1 µg/m3 to 87.3 µg/m3. The average concentration of carcinogenic benzene was below 1.5 μg/m3. Toluene had the highest concentration among studied VOCs, accounting for as high as 60% and 84% of the total indoor and outdoor VOCs, respectively. High indoor-to-outdoor (I/O) ratios for ethylbenzene (7.1), m,p-xylene (9.8), and styrene (12.5) indicate the dominant role of indoor sources.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Trishala Gopikrishna ◽  
Harini Keerthana Suresh Kumar ◽  
Kumar Perumal ◽  
Elavarashi Elangovan

Abstract Purpose Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. Methods This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. Results The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. Conclusion Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.


Sign in / Sign up

Export Citation Format

Share Document