scholarly journals Efficient Two-Step Fifth-Order and Its Higher-Order Algorithms for Solving Nonlinear Systems with Applications

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 37
Author(s):  
Parimala Sivakumar ◽  
Jayakumar Jayaraman

This manuscript presents a new two-step weighted Newton’s algorithm with convergence order five for approximating solutions of system of nonlinear equations. This algorithm needs evaluation of two vector functions and two Frechet derivatives per iteration. Furthermore, it is improved into a general multi-step algorithm with one more vector function evaluation per step, with convergence order 3 k + 5 , k ≥ 1 . Error analysis providing order of convergence of the algorithms and their computational efficiency are discussed based on the computational cost. Numerical implementation through some test problems are included, and comparison with well-known equivalent algorithms are presented. To verify the applicability of the proposed algorithms, we have implemented them on 1-D and 2-D Bratu problems. The presented algorithms perform better than many existing algorithms and are equivalent to a few available algorithms.

2019 ◽  
Vol 16 (05) ◽  
pp. 1840008
Author(s):  
Ramandeep Behl ◽  
Prashanth Maroju ◽  
S. S. Motsa

In this study, we design a new efficient family of sixth-order iterative methods for solving scalar as well as system of nonlinear equations. The main beauty of the proposed family is that we have to calculate only one inverse of the Jacobian matrix in the case of nonlinear system which reduces the computational cost. The convergence properties are fully investigated along with two main theorems describing their order of convergence. By using complex dynamics tools, its stability is analyzed, showing stable members of the family. From this study, we intend to have more information about these methods in order to detect those with best stability properties. In addition, we also presented a numerical work which confirms the order of convergence of the proposed family is well deduced for scalar, as well as system of nonlinear equations. Further, we have also shown the implementation of the proposed techniques on real world problems like Van der Pol equation, Hammerstein integral equation, etc.


Author(s):  
Yusuf Dauda Jikantoro ◽  
Yahaya Badeggi Aliyu ◽  
Aliyu Alhaji Ishaku Ma’ali ◽  
Abdulkadir Abubakar ◽  
Ismail Musa

Presented here is a numerical integrator, with sixth order of convergence, for solving oscillatory problems. Dispersion and dissipation errors are taken into account in the course of deriving the method. As a result, the method possesses dissipation of order infinity and dispersive of order six. Validity and effectiveness of the method are tested on a number of test problems. Results obtained show that the new method is better than its equals in the scientific literature. 


Author(s):  
Fayyaz Ahmad ◽  
Malik Zaka Ullah ◽  
Ali Saleh Alshomrani ◽  
Shamshad Ahmad ◽  
Aisha M. Alqahtani ◽  
...  

The study of different forms of preconditioners for solving a system of nonlinear equations, by using Newton’s method, is presented. The preconditioners provide numerical stability and rapid convergence with reasonable computation cost, whenever chosen accurately. Different families of iterative methods can be constructed by using a different kind of preconditioners. The multi-step iterative method consists of a base method and multi-step part. The convergence order of base method is quadratic and each multi-step add an additive factor of one in the previously achieved convergence order. Hence the convergence of order of an m-step iterative method is m + 1. Numerical simulations confirm the claimed convergence order by calculating the computational order of convergence. Finally, the numerical results clearly show the benefit of preconditioning for solving system of nonlinear equations.


Author(s):  
George H. Cheng ◽  
Adel Younis ◽  
Kambiz Haji Hajikolaei ◽  
G. Gary Wang

Mode Pursuing Sampling (MPS) was developed as a global optimization algorithm for optimization problems involving expensive black box functions. MPS has been found to be effective and efficient for problems of low dimensionality, i.e., the number of design variables is less than ten. A previous conference publication integrated the concept of trust regions into the MPS framework to create a new algorithm, TRMPS, which dramatically improved performance and efficiency for high dimensional problems. However, although TRMPS performed better than MPS, it was unproven against other established algorithms such as GA. This paper introduces an improved algorithm, TRMPS2, which incorporates guided sampling and low function value criterion to further improve algorithm performance for high dimensional problems. TRMPS2 is benchmarked against MPS and GA using a suite of test problems. The results show that TRMPS2 performs better than MPS and GA on average for high dimensional, expensive, and black box (HEB) problems.


2019 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Deasy Wahyuni ◽  
Elisawati Elisawati

Newton method is one of the most frequently used methods to find solutions to the roots of nonlinear equations. Along with the development of science, Newton's method has undergone various modifications. One of them is the hasanov method and the newton method variant (vmn), with a higher order of convergence. In this journal focuses on the three-step iteration method in which the order of convergence is higher than the three methods. To find the convergence order of the three-step iteration method requires a program that can support the analytical results of both methods. One of them using the help of the matlab program. Which will then be compared with numerical simulations also using the matlab program.  Keywords : newton method, newton method variant, Hasanov Method and order of convergence


2021 ◽  
Author(s):  
Ana Barbosa Aguiar ◽  
Jennifer Waters ◽  
Martin Price ◽  
Gordon Inverarity ◽  
Christine Pequignet ◽  
...  

<div> <p>The importance of oceans for atmospheric forecasts as well as climate simulations is being increasingly recognised with the advent of coupled ocean / atmosphere forecast models. Having comparable resolutions in both domains maximises the benefits for a given computational cost. The Met Office has recently upgraded its operational global ocean-only model from an eddy permitting 1/4 degree tripolar grid (ORCA025) to the eddy resolving 1/12 degree ORCA12 configuration while retaining 1/4 degree data assimilation. </p> </div><div> <p>We will present a description of the ocean-only ORCA12 system, FOAM-ORCA12, alongside some initial results. Qualitatively, FOAM-ORCA12 seems to represent better (than FOAM-ORCA025) the details of mesoscale features in SST and surface currents. Overall, traditional statistical results suggest that the new FOAM-ORCA12 system performs similarly or slightly worse than the pre-existing FOAM-ORCA025. However, it is known that comparisons of models running at different resolutions suffer from a double penalty effect, whereby higher-resolution models are penalised more than lower-resolution models for features that are offset in time and space. Neighbourhood verification methods seek to make a fairer comparison using a common spatial scale for both models and it can be seen that, as neighbourhood sizes increase, ORCA12 consistently has lower continuous ranked probability scores (CRPS) than ORCA025. CRPS measures the accuracy of the pseudo-ensemble created by the neighbourhood method and generalises the mean absolute error measure for deterministic forecasts. </p> </div><div> <p>The focus over the next year will be on diagnosing the performance of both the model and assimilation. A planned development that is expected to enhance the system is the update of the background-error covariances used for data assimilation. </p> </div>


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 904 ◽  
Author(s):  
Afshin Babaei ◽  
Hossein Jafari ◽  
S. Banihashemi

A spectral collocation approach is constructed to solve a class of time-fractional stochastic heat equations (TFSHEs) driven by Brownian motion. Stochastic differential equations with additive noise have an important role in explaining some symmetry phenomena such as symmetry breaking in molecular vibrations. Finding the exact solution of such equations is difficult in many cases. Thus, a collocation method based on sixth-kind Chebyshev polynomials (SKCPs) is introduced to assess their numerical solutions. This collocation approach reduces the considered problem to a system of linear algebraic equations. The convergence and error analysis of the suggested scheme are investigated. In the end, numerical results and the order of convergence are evaluated for some numerical test problems to illustrate the efficiency and robustness of the presented method.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 271 ◽  
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros

Many real-life problems can be reduced to scalar and vectorial nonlinear equations by using mathematical modeling. In this paper, we introduce a new iterative family of the sixth-order for a system of nonlinear equations. In addition, we present analyses of their convergences, as well as the computable radii for the guaranteed convergence of them for Banach space valued operators and error bounds based on the Lipschitz constants. Moreover, we show the applicability of them to some real-life problems, such as kinematic syntheses, Bratu’s, Fisher’s, boundary value, and Hammerstein integral problems. We finally wind up on the ground of achieved numerical experiments, where they perform better than other competing schemes.


Algorithms ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 10 ◽  
Author(s):  
Nizam Ghawadri ◽  
Norazak Senu ◽  
Firas Adel Fawzi ◽  
Fudziah Ismail ◽  
Zarina Ibrahim

In this study, fifth-order and sixth-order diagonally implicit Runge–Kutta type (DIRKT) techniques for solving fourth-order ordinary differential equations (ODEs) are derived which are denoted as DIRKT5 and DIRKT6, respectively. The first method has three and the another one has four identical nonzero diagonal elements. A set of test problems are applied to validate the methods and numerical results showed that the proposed methods are more efficient in terms of accuracy and number of function evaluations compared to the existing implicit Runge–Kutta (RK) methods.


Sign in / Sign up

Export Citation Format

Share Document