scholarly journals Viscoelastic Characterization of Parasagittal Bridging Veins and Implications for Traumatic Brain Injury: A Pilot Study

2021 ◽  
Vol 8 (10) ◽  
pp. 145
Author(s):  
Silvia García-Vilana ◽  
David Sánchez-Molina ◽  
Jordi Llumà ◽  
Ignasi Galtés ◽  
Juan Velázquez-Ameijide ◽  
...  

Many previous studies on the mechanical properties of Parasagittal Bridging Veins (PSBVs) found that strain rate had a significant effect on some mechanical properties, but did not extensively study the viscoelastic effects, which are difficult to detect with uniaxial simple tensile tests. In this study, relaxation tests and tests under cyclic loading were performed, and it was found that PSBVs do indeed exhibit clear viscoelastic effects. In addition, a complete viscoelastic model for the PSBVs is proposed and data from relaxation, cyclic load and load-unload tests for triangular loads are used to find reference values that characterize the viscoelastic behavior of the PSBVs. Although such models have been proposed for other types of blood vessels, this is the first study that clearly demonstrates the existence of viscoelastic effects from an experimental point of view and also proposes a specific model to explain the data obtained. Finally, this study provides reference values for the usual viscoelastic properties, which would allow more accurate numerical simulation of PSBVs by means of computational models.

Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 831
Author(s):  
David Sánchez-Molina ◽  
Silvia García-Vilana ◽  
Jordi Llumà ◽  
Ignasi Galtés ◽  
Juan Velázquez-Ameijide ◽  
...  

The mechanical properties of the cerebral bridging veins (CBVs) were studied using advanced microtensile equipment. Detailed high-quality curves were obtained at different strain rates, showing a clearly nonlinear stress–strain response. In addition, the tissue of the CBVs exhibits stress relaxation and a preconditioning effect under cyclic loading, unequivocal indications of viscoelastic behavior. Interestingly, most previous literature that conducts uniaxial tensile tests had not found significant viscoelastic effects in CBVs, but the use of more sensitive tests allowed to observe the viscoelastic effects. For that reason, a careful mathematical analysis is presented, clarifying why in uniaxial tests with moderate strain rates, it is difficult to observe any viscoelastic effect. The analysis provides a theoretical explanation as to why many recent studies that investigated mechanical properties did not find a significant viscoelastic effect, even though in other circumstances, the CBV tissue would clearly exhibit viscoelastic behavior. Finally, this study provides reference values for the usual mechanical properties, as well as calculations of constitutive parameters for nonlinear elastic and viscoelastic models that would allow more accurate numerical simulation of CBVs in Finite Element-based computational models in future works.


2020 ◽  
Vol 978 ◽  
pp. 277-283
Author(s):  
Kishore Kumar Mahato ◽  
Krishna Chaitanya Nuli ◽  
Krishna Dutta ◽  
Rajesh Kumar Prusty ◽  
Bankim Chandra Ray

Fiber reinforced polymeric (FRP) composite materials are currently used in numerous structural and materials related applications. But, during their in-service period these composites were exposed to different changing environmental conditions. Present investigation is planned to explore the effect of thermal shock exposure on the mechanical properties of nanoTiO2 enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were conditioned at +70°C temperature for 36 h followed by further conditioning at – 60°C temperature for the similar interval of time. In order to estimate the thermal shock influence on the mechanical properties, tensile tests of the conditioned samples were carried out at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with different nanoTiO2 content (i.e. 0.1, 0.3 and 0.5 wt. %). The tensile strength of 0.1 wt.% nanoTiO2 GFRP filled composites exhibited higher ultimate tensile strength (UTS) among all other composites. The possible reason may be attributed to the good dispersion of nanoparticles in polymer matrix corresponds to proper stress transfer during thermal shock conditioning. In order to access the variations in the viscoelastic behavior and glass transition temperature due to the addition of nanoTiO2 in GFRP composite and also due to the thermal shock conditioning, dynamic mechanical thermal analysis (DMTA) measurements were carried out. Different modes of failures and strengthening morphology in the composites were analyzed under scanning electron microscope (SEM).


Author(s):  
A. Vidal-Lesso ◽  
E. Ledesma-Orozco ◽  
R. Lesso-Arroyo ◽  
L. Daza-Benitez

Biomechanical properties and dynamic response of soft tissues as articular cartilage remains issues for attention. Currently, linear isotropic models are still used for cartilage analysis in spite of its viscoelastic nature. Therefore, the aim of this study was to propose a nonlinear viscoelastic model for cartilage indentation that combines the geometrical parameters and velocity of the indentation test with the thickness of the sample as well as the mechanical properties of the tissue changing over time due to its viscoelastic behavior. Parameters of the indentation test and mechanical properties as a function of time were performed in Laplace space where the constitutive equation for viscoelasticity and the convolution theorem was applied in addition with the Maxwell model and Hayes et al. model for instantaneous elastic modulus. Results of the models were compared with experimental data of indentation tests on osteoarthritic cartilage of a unicompartmental osteoarthritis cases. The models showed a strong fit for the axial indentation nonlinear force in the loading curve (R2 = 0.992) and a good fit for unloading (R2 = 0.987), while an acceptable fit was observed in the relaxation curve (R2 = 0.967). These models may be used to study the mechanical response of osteoarthritic cartilage to several dynamical and geometrical test conditions.


2016 ◽  
Vol 36 (4) ◽  
pp. 254-270 ◽  
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The purpose of the paper is the estimation of the polyvinyl chloride – polyester-coated fabric (Precontraint 1202 S2) mechanical properties under uniaxial tensile tests as well as short- and long-time creep tests. The uniaxial tests are the basis of non-linear elastic description while the creep tests are used for the evaluation of the stiffness parameters in time and for the identification of the standard viscoelastic model. The paper also includes a short survey of literature concerning the coated woven fabric description.


Author(s):  
Isabella Bozzo ◽  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Ivan Breslavsky ◽  
Giovanni Ferrari

Abstract Heart disease is the second leading cause of death in Canada resulting in $20.9 billion annual healthcare expenditures [1,2]. Understanding the mechanics of the human descending thoracic aorta is fundamental for comprehending the development of pathologies and improving surgical prostheses. This study presents hyperelastic and viscoelastic material characterizations of the human descending thoracic aorta from twelve different donors, with a mean age of 49.4 years. The specimens were dissected into the three constituent layers: intima, media and adventitia. Evaluating the layer-specific opening angles led to the computation of the circumferential residual stresses. Uniaxial tensile tests of each layer, in both the circumferential and axial direction, were used to model the hyperelastic behavior according to the Gasser-Ogden-Holzapfel model (GOH). The storage modulus and loss tangent for the layers were obtained from uniaxial harmonic excitations at varied frequencies, to model the viscoelastic behavior with the generalized Maxwell model. The results showed a positive correlation between age and stiffness for all layers, both axially and circumferentially. Similar loss tangent values were found across the three layers. A large increase in the storage modulus from static to dynamic experiments further corroborates the importance of a viscoelastic model of the aorta, rather than solely hyperelastic.


2007 ◽  
Vol 34 (11) ◽  
pp. 1053
Author(s):  
Stephen A. Warmann ◽  
William F. Pickard ◽  
Amy Q. Shen

Forisomes are elongate Ca2+-responsive contractile protein bodies and act as flow blocking gates within the phloem of legumes. Because an understanding of their mechanical properties in vitro underpins understanding of their physiology in vivo, we undertook, using a microcantilever method, microscopic tensile tests (incremental stress-relaxation measurements) on forisomes from Canavalia gladiata (Jacq.) DC Akanata Mame and Vicia faba L. Witkiem Major. Viscoelastic properties of forisomes in their longitudinal direction were investigated before and after Ca2+-induced contraction, but in the radial direction only before contraction. Forisomes showed mechanical properties typical of a biological material with a unidirectional fibrous structure, i.e. the modulus of elasticity in the direction of their fibers is much greater than in the radial direction. Creep data were collected in all tensile tests and fit with a three parameter viscoelastic model. The pre-contraction longitudinal elastic moduli of the forisomes were not differentiable between the two species (V. faba, 660���360�kPa; C. gladiata, 600���360�kPa). Both species showed a direction-dependent mechanical response: the elastic modulus was dramatically smaller in the radial direction than in the longitudinal direction, suggesting a weak protein cross-linking amongst longitudinal protein fibers. Activation of forisomes decreased forisome stiffness longitudinally, as evidenced by the loss of toe-region in the stress strain curve, suggesting that the forisome may have dispersed or disordered its protein structure in a controlled fashion. Contractile forces generated by single forisomes undergoing activation were also measured for V. faba (510���390�nN) and C. gladiata (570���310�nN).


2007 ◽  
Vol 34 (10) ◽  
pp. 935 ◽  
Author(s):  
Stephen A. Warmann ◽  
William F. Pickard ◽  
Amy Q. Shen

Forisomes are elongate Ca2+-responsive contractile protein bodies and act as flow blocking gates within the phloem of legumes. Because an understanding of their mechanical properties in vitro underpins understanding of their physiology in vivo, we undertook, using a microcantilever method, microscopic tensile tests (incremental stress-relaxation measurements) on forisomes from Canavalia gladiata (Jacq.) DC Akanata Mame and Vicia faba L. Witkiem Major. Viscoelastic properties of forisomes in their longitudinal direction were investigated before and after Ca2+-induced contraction, but in the radial direction only before contraction. Forisomes showed mechanical properties typical of a biological material with a unidirectional fibrous structure, i.e. the modulus of elasticity in the direction of their fibers is much greater than in the radial direction. Creep data were collected in all tensile tests and fit with a three parameter viscoelastic model. The pre-contraction longitudinal elastic moduli of the forisomes were not differentiable between the two species (V. faba, 660 ± 360 kPa; C. gladiata, 600 ± 360 kPa). Both species showed a direction-dependent mechanical response: the elastic modulus was dramatically smaller in the radial direction than in the longitudinal direction, suggesting a weak protein cross-linking amongst longitudinal protein fibers. Activation of forisomes decreased forisome stiffness longitudinally, as evidenced by the loss of toe-region in the stress strain curve, suggesting that the forisome may have dispersed or disordered its protein structure in a controlled fashion. Contractile forces generated by single forisomes undergoing activation were also measured for V. faba (510 ± 390 nN) and C. gladiata (570 ± 310 nN).


2021 ◽  
Vol 37 ◽  
pp. 446-453
Author(s):  
Hao-Hsun Hsu ◽  
Jia-Lin Tsai

Abstract In this study, the hyper-viscoelastic behavior of adhesive films was characterized. A constitutive model was developed by combining the Mooney–Rivlin hyperelastic model and a viscoelastic model expressed in terms of the Prony series to describe the constitutive behavior of the adhesive films. The material parameters of the developed constitutive model were determined through single-step stress relaxation tests conducted for 30 min at four strain levels: 100%, 200%, 300% and 400%. Based on the reduced gradient method, the optimized material parameters were then evaluated by curve fitting the experimental data. To validate the proposed constitutive model, we performed the tensile tests at different strain rates from 5 × 10−4 to 5 × 10−1 s−1 and the multistep stress relaxation tests on the adhesive films. The model predictions and experimental data were in good agreement. Thus, the proposed hyper-viscoelastic constitutive model with parameters determined through single-step stress relaxation tests is effective in characterizing the mechanical behavior of adhesive films.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Lamya Zahir ◽  
Takumitsu Kida ◽  
Ryo Tanaka ◽  
Yuushou Nakayama ◽  
Takeshi Shiono ◽  
...  

An innovative type of biodegradable thermoplastic elastomers with improved mechanical properties from very common and potentially renewable sources, poly(L-lactide)-b-poly(2-methyl-1,3-propylene glutarate)-b-poly(L-lactide) (PLA-b-PMPG-b-PLA)s, has been developed for the first time. PLA-b-PMPG-b-PLAs were synthesized by polycondensation of 2-methyl-1,3-propanediol and glutaric acid and successive ring-opening polymerization of L-lactide, where PMPG is an amorphous central block with low glass transition temperature and PLA is hard semicrystalline terminal blocks. The copolymers showed glass transition temperature at lower than −40 °C and melting temperature at 130–152 °C. The tensile tests of these copolymers were also performed to evaluate their mechanical properties. The degradation of the copolymers and PMPG by enzymes proteinase K and lipase PS were investigated. Microbial biodegradation in seawater was also performed at 27 °C. The triblock copolymers and PMPG homopolymer were found to show 9–15% biodegradation within 28 days, representing their relatively high biodegradability in seawater. The macromolecular structure of the triblock copolymers of PLA and PMPG can be controlled to tune their mechanical and biodegradation properties, demonstrating their potential use in various applications.


Sign in / Sign up

Export Citation Format

Share Document