scholarly journals HERV-K(HML7) Integrations in the Human Genome: Comprehensive Characterization and Comparative Analysis in Non-Human Primates

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 439
Author(s):  
Nicole Grandi ◽  
Maria Paola Pisano ◽  
Eleonora Pessiu ◽  
Sante Scognamiglio ◽  
Enzo Tramontano

Endogenous Retroviruses (ERVs) are ancient relics of infections that affected the primate germ line and constitute about 8% of our genome. Growing evidence indicates that ERVs had a major role in vertebrate evolution, being occasionally domesticated by the host physiology. In addition, human ERV (HERV) expression is highly investigated for a possible pathological role, even if no clear associations have been reported yet. In fact, on the one side, the study of HERV expression in high-throughput data is a powerful and promising tool to assess their actual dysregulation in diseased conditions; but, on the other side, the poor knowledge about the various HERV group genomic diversity and individual members somehow prevented the association between specific HERV loci and a given molecular mechanism of pathogenesis. The present study is focused on the HERV-K(HML7) group that—differently from the other HERV-K members—still remains poorly characterized. Starting from an initial identification performed with the software RetroTector, we collected 23 HML7 proviral insertions and about 160 HML7 solitary LTRs that were analyzed in terms of genomic distribution, revealing a significant enrichment in chromosome X and the frequent localization within human gene introns as well as in pericentromeric and centromeric regions. Phylogenetic analyses showed that HML7 members form a monophyletic group, which based on age estimation and comparative localization in non-human primates had its major diffusion between 20 and 30 million years ago. Structural characterization revealed that besides 3 complete HML7 proviruses, the other group members shared a highly defective structure that, however, still presents recognizable functional domains, making it worth further investigation in the human population to assess the presence of residual coding potential.

2021 ◽  
Vol 95 ◽  
Author(s):  
B. Neov ◽  
G.P. Vasileva ◽  
G. Radoslavov ◽  
P. Hristov ◽  
D.T.J. Littlewood ◽  
...  

Abstract The aim of the study is to test a hypothesis for the phylogenetic relationships among mammalian hymenolepidid tapeworms, based on partial (D1–D3) nuclear 28S ribosomal RNA (rRNA) genes, by estimating new molecular phylogenies for the group based on partial mitochondrial cytochrome c oxidase I (COI) and nuclear 18S rRNA genes, as well as a combined analysis using all three genes. New sequences of COI and 18S rRNA genes were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analyses confirmed the major clades identified by Haukisalmi et al. (Zoologica Scripta 39: 631–641, 2010): Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade. While the Ditestolepis clade is associated with soricids, the structure of the other three clades suggests multiple evolutionary events of host switching between shrews and rodents. Two of the present analyses (18S rRNA and COI genes) show that the basal relationships of the four mammalian clades are branching at the same polytomy with several hymenolepidids from birds (both terrestrial and aquatic). This may indicate a rapid radiation of the group, with multiple events of colonizations of mammalian hosts by avian parasites.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mahdi Golkaram ◽  
Michael L. Salmans ◽  
Shannon Kaplan ◽  
Raakhee Vijayaraghavan ◽  
Marta Martins ◽  
...  

AbstractColorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression, oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114 CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months for other subgroups (HR = 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role for hERVs in leading to a more aggressive subtype of CRC.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


2004 ◽  
Vol 78 (5) ◽  
pp. 2502-2509 ◽  
Author(s):  
Linda Scobie ◽  
Samantha Taylor ◽  
James C. Wood ◽  
Kristen M. Suling ◽  
Gary Quinn ◽  
...  

ABSTRACT The potential transmission of porcine endogenous retroviruses (PERVs) has raised concern in the development of porcine xenotransplantation products. Our previous studies have resulted in the identification of animals within a research herd of inbred miniature swine that lack the capacity to transmit PERV to human cells in vitro. In contrast, other animals were capable of PERV transmission. The PERVs that were transmitted to human cells are recombinants between PERV-A and PERV-C in the post-VRA region of the envelope (B. A. Oldmixon, J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience, J. Virol. 76:3045-3048, 2002); these viruses we term PERV-A/C. This observation prompted us to determine whether these human-tropic replication-competent (HTRC) PERV-A/C recombinants were present in the genomic DNA of these miniature swine. Genomic DNA libraries were generated from one miniature swine that transmitted HTRC PERV as well as from one miniature swine that did not transmit HTRC PERV. HTRC PERV-A/C proviruses were not identified in the germ line DNAs of these pigs by using genomic mapping. Similarly, although PERV-A loci were identified in both libraries that possessed long env open reading frames, the Env proteins encoded by these loci were nonfunctional according to pseudotype assays. In the absence of a germ line source for HTRC PERV, further studies are warranted to assess the mechanisms by which HTRC PERV can be generated. Once identified, it may prove possible to generate animals with further reduced potential to produce HTRC PERV.


2014 ◽  
Vol 461 (3) ◽  
pp. 371-381 ◽  
Author(s):  
Silvia Penuela ◽  
Luke Harland ◽  
Jamie Simek ◽  
Dale W. Laird

In less than a decade, a small family of channel-forming glycoproteins, named pannexins, have captured the interest of many biologists, in large part due to their association with common diseases, ranging from cancers to neuropathies to infectious diseases. Although the pannexin family consists of only three members (Panx1, Panx2 and Panx3), one or more of these pannexins are expressed in virtually every mammalian organ, implicating their potential role in a diverse array of pathophysiologies. Panx1 is the most extensively studied, but features of this pannexin must be cautiously extrapolated to the other pannexins, as for example we now know that Panx2, unlike Panx1, exhibits unique properties such as a tendency to be retained within intracellular compartments. In the present review, we assess the biochemical and channel features of pannexins focusing on the literature which links these unique molecules to over a dozen diseases and syndromes. Although no germ-line mutations in genes encoding pannexins have been linked to any diseases, many cases have shown that high pannexin expression is associated with disease onset and/or progression. Disease may also occur, however, when pannexins are underexpressed, highlighting that pannexin expression must be exquisitely regulated. Finally, we discuss some of the most pressing questions and controversies in the pannexin field as the community seeks to uncover the full biological relevance of pannexins in healthy organs and during disease.


2011 ◽  
Vol 85 (2) ◽  
pp. 234-249 ◽  
Author(s):  
Dirk Fuchs ◽  
Neal Larson

Morphologic analyses of a large collection of coleoid cephalopods from the Lebanese Upper Cretaceous yielded a much higher diversity than previously assumed and revealed numerous extraordinarily well-preserved, soft-part characters. An analysis of the Prototeuthidina, a gladius-bearing group with a slender torpedo-shaped body, revealed two species:Dorateuthis syriacaandBoreopeltis smithin. sp. Previously unknown soft-part characters, such as the digestive tract, the gills, and the cephalic cartilage considerably improved our knowledge ofD. syriaca.Since none of the investigated specimens show more than eight arms, similarities with modern squids are regarded as superficial.Boreopeltis smithin. sp. is erected on the basis of its comparatively wideParaplesioteuthis-like gladius. The latter species represents the first unambiguous record of this genus in Upper Cretaceous deposits. Phylogenetic analyses indicate that the prototeuthidid clade consists of two lineages. The plesioteuthidid lineage originates from early JurassicParaplesioteuthisand leads toPlesioteuthisandDorateuthis.The other lineage is morphologically more conservative and leads toBoreopeltis.


2013 ◽  
Vol 94 (5) ◽  
pp. 960-970 ◽  
Author(s):  
Gernot Wolf ◽  
Anders Lade Nielsen ◽  
Jacob Giehm Mikkelsen ◽  
Finn Skou Pedersen

Endogenous retroviruses (ERVs) are remnants of retroviral germ line infections and have been identified in all mammals investigated so far. Although the majority of ERVs are degenerated, some mammalian species, such as mice and pigs, carry replication-competent ERVs capable of forming infectious viral particles. In mice, ERVs are silenced by DNA methylation and histone modifications and some exogenous retroviruses were shown to be transcriptionally repressed after integration by a primer-binding site (PBS) targeting mechanism. However, epigenetic repression of porcine ERVs (PERVs) has remained largely unexplored so far. In this study, we screened the pig genome for PERVs using LTRharvest, a tool for de novo detection of ERVs, and investigated various aspects of epigenetic repression of three unrelated PERV families. We found that these PERV families are differentially up- or downregulated upon chemical inhibition of DNA methylation and histone deacetylation in cultured porcine cells. Furthermore, chromatin immunoprecipitation analysis revealed repressive histone methylation marks at PERV loci in primary porcine embryonic germ cells and immortalized embryonic kidney cells. PERV elements belonging to the PERV-γ1 family, which is the only known PERV family that has remained active up to the present, were marked by significantly higher levels of histone methylations than PERV-γ2 and PERV-β3 proviruses. Finally, we tested three PERV-associated PBS sequences for repression activity in murine and porcine cells using retroviral transduction experiments and showed that none of these PBS sequences induced immediate transcriptional silencing in the tested primary porcine cells.


2021 ◽  
Vol 5 (2) ◽  
pp. 177-187
Author(s):  
Lourdes Y. Echevarría ◽  
Pablo J. Venegas ◽  
Luis A. García-Ayachi ◽  
Pedro M. Sales Nunes

We describe a new species of Selvasaura from the montane forests of the eastern slopes of the Andes in northern Peru, based on external and hemipenial morphological characters and previous phylogenetic analyses. The new species can be differentiated from the other two Selvasaura species in having keeled dorsal scales usually flanked by longitudinal striations, in adults and juveniles; adult males with a yellow vertebral stripe bordered by broad dark brown stripes on each side and a unilobed hemipenis surrounded by the branches of the sulcus spermaticus. The description of the new species contributes information about new states of diagnostic characters of Selvasaura and natural history.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009730
Author(s):  
Jialu Zheng ◽  
Jianhua Wang ◽  
Zhen Gong ◽  
Guan-Zhu Han

The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.


PhytoKeys ◽  
2020 ◽  
Vol 148 ◽  
pp. 51-70
Author(s):  
Takuro Ito ◽  
Chih-Chieh Yu ◽  
Masatsugu Yokota ◽  
Goro Kokubugata

We re-examined the taxonomic status of plants treated as Sedum formosanum (Crassulaceae) from Miyako-jima Island of the Ryukyu Islands, Japan, using morphological comparison and molecular phylogenetic analyses with related species. In morphology, plants from Miyako-jima Island bore a close resemblance to the other plants of S. formosanum, but differed in being perennial, polycarpic, and having lateral axillary branches. Molecular analyses based on ITS of nrDNA and six regions of cpDNA sequencing indicated that the Miyako-jima plants formed a distinct subclade. This subclade was part of a polytomy with three other subclades comprising nine taxa endemic to Taiwan and S. formosanum from other areas, including the type locality. Therefore, we propose and describe the Miyako-jima plants as a new subspecies, Sedum formosanum subsp. miyakojimense.


Sign in / Sign up

Export Citation Format

Share Document