scholarly journals Drought Tolerance and Application of Marker-Assisted Selection in Sorghum

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1249
Author(s):  
Andekelile Mwamahonje ◽  
John Saviour Yaw Eleblu ◽  
Kwadwo Ofori ◽  
Santosh Deshpande ◽  
Tileye Feyissa ◽  
...  

Sorghum is an important staple food crop in drought prone areas of Sub-Saharan Africa, which is characterized by erratic rainfall with poor distribution. Sorghum is a drought-tolerant crop by nature with reasonable yield compared to other cereal crops, but such abiotic stress adversely affects the productivity. Some sorghum varieties maintain green functional leaves under post-anthesis drought stress referred to as stay-green, which makes it an important crop for food and nutritional security. Notwithstanding, it is difficult to maintain consistency of tolerance over time due to climate change, which is caused by human activities. Drought in sorghum is addressed by several approaches, for instance, breeding drought-tolerant sorghum using conventional and molecular technologies. The challenge with conventional methods is that they depend on phenotyping stay-green, which is complex in sorghum, as it is constituted by multiple genes and environmental effects. Marker assisted selection, which involves the use of DNA molecular markers to map QTL associated with stay-green, has been useful to supplement stay-green improvement in sorghum. It involves QTL mapping associated with the stay-green trait for introgression into the senescent sorghum varieties through marker-assisted backcrossing by comparing with phenotypic field data. Therefore, this review discusses mechanisms of drought tolerance in sorghum focusing on physiological, morphological, and biochemical traits. In addition, the review discusses the application of marker-assisted selection techniques, including marker-assisted backcrossing, QTL mapping, and QTL pyramiding for addressing post-flowering drought in sorghum.

2012 ◽  
Vol 10 (3) ◽  
pp. 171-176 ◽  
Author(s):  
Christian A. Fatokun ◽  
Ousmane Boukar ◽  
Satoru Muranaka

Cowpea is an important grain legume crop in sub-Saharan Africa (SSA) where, on a worldwide basis, the bulk is produced and consumed. The dry savanna area of SSA is where cowpea is mostly grown under rain-fed conditions. The crop is therefore prone to drought which may occur early, mid and/or late in the cropping season. Compared with many other crops, cowpea is drought tolerant, even though drought is still a major constraint limiting its productivity in SSA. Increasing the level of drought tolerance in existing cowpea varieties grown by farmers would enable them to obtain more and stable yield from their cowpea fields. As a first step towards enhancing drought tolerance in existing cowpea varieties, 1288 lines were selected randomly from cowpea germplasm collections maintained at the International Institute of Tropical Agriculture, and evaluated for their drought tolerance at Ibadan. Drought was imposed by withdrawal of irrigation from 5 weeks after sowing. On average, drought reduced the number of days to flower by 12 d, and the mean grain yield per plant was also reduced by 67.28%. A few of the cowpea lines stayed green for up to 6 weeks after irrigation was stopped, even though some of these produced no pods when the study was terminated. Further evaluation in the screenhouse of 142 selected drought-tolerant lines helped to identify six lines that could be potential parents for developing breeding lines with enhanced drought tolerance.


2008 ◽  
Vol 146 (6) ◽  
pp. 689-694 ◽  
Author(s):  
M. T. LABUSCHAGNE ◽  
R. VERHOEVEN ◽  
M. NKOUANESSI

SUMMARYIn Sub-Saharan Africa, cowpea is well known for its ability to survive under conditions of water stress and it plays an important role in regions where drought is the factor most limiting to crop yield. In the present study, the drought tolerance levels of 20 African cowpea accessions from three countries were evaluated. A number of the genotypes showed drought tolerance, the merits of stomatal behaviour and cell membrane stability to assess drought tolerance was demonstrated. Damage to the cell membranes caused by drought was less in tolerant accessions. Stomatal opening was also better regulated; the opening was smaller under drought conditions, thus reducing transpiration (T). The wide range of drought tolerance observed among the accessions suggests the possibility of breeding drought-tolerant cultivars in cowpea. Drought-tolerant accessions included Bafoussam 1, M.66, Bafoussam 3, Hluhluwa, Bafoussam 4, Balen, Makueni, Bafoussam 2 and Okhalweni and these could be recommended to breeders as valuable material for drought tolerance improvement in cowpea.


2011 ◽  
Vol 13 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Neo C. Mokgolodi ◽  
Moffat P. Setshogo ◽  
Ling-ling Shi ◽  
Yu-jun Liu ◽  
Chao Ma

Author(s):  
M. S. Alidu

Background: Cowpea plays a critical role in the lives of millions of people in Africa and other parts of the developing world, where it is a major source of dietary protein that nutritionally complements staple low-protein cereal and tuber crops. It is a valuable and dependable commodity that produces income for farmers and traders. Objective: To review related research work on the genetic variability for time to flowering, maturity and drought tolerance in cowpea. Data Source: Searches were made from the following databases and archives; International Institute of Tropical Agriculture (IITA), The Essential Electronic Agricultural Library (TEAL), Access to Global Online Research in Agriculture (AGORA) (FAO), AGRICOLA (National Agricultural Library), AGRIS - Agricultural Sciences and Technology (FAO), CAS - Chemical Abstracts (ACS), DOAJ - Directory of Open Access Journals, CABI, Euphytica, Elsevier, Research Alert, Scopus and CGIAR, Plant Genetics and Breeding Database, Crop Science Database, Plant Genetics and Breeding Database, data base repositories, using the terms “genetic variability”, “drought”, “tolerance”, “ time to flowering and maturity”, and “cowpea” individually or in combination to identify literature published in English language between January 1990 to January 2018. Methods: The review was carried out using the above search terms. Research papers were critically reviewed, relevant data extracted, and a narrative synthesis was conducted to determine the relevant papers. Results: In all 150 papers met the inclusion criteria. Collections were from varied background; Sub-Saharan Africa, Asia, Europe, and Latin Americas. Conclusion: Despite research studies on cowpea and drought, there appears to be limited such research findings on the time to flowering, and maturity in relations to drought tolerance in cowpea in Ghana, suggesting more research in this part of the world.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 692 ◽  
Author(s):  
Aleck Kondwakwenda ◽  
Julia Sibiya ◽  
Rebecca Zengeni ◽  
Cousin Musvosvi ◽  
Samson Tesfay

Provitamin A maize (Zea mays L.) biofortification is an ideal complementary means of combating vitamin A deficiency (VAD) in sub-Saharan Africa where maize consumption is high coupled by high VAD incidences. However, drought remains a major abiotic constraint to maize productivity in this region. Comprehensive drought screening of initial breeding materials before advancing them is important to achieve genetic gain. In this study, 46 provitamin-A inbred lines were screened for drought tolerance in the greenhouse and field under drought and optimum conditions using β-carotene content (BCC), grain yield (GY), and selected morphophysiological and biochemical traits. The results revealed that BCC, morphophysiological and biochemical traits were effective in discriminating among genotypes. Number of ears per plant (EPP), stomatal conductance (Gs), delayed leaf senescence (SEN), leaf rolling (RL), chlorophyll content (CC) and free proline content (PC) proved to be ideal traits to use when indirectly selecting for GY by virtue of having relative efficiency of indirect selection values that are greater than unity and considerable genetic variances under either or both conditions. The findings of this study form the basis of initial germplasm selection when improving provitamin A maize for drought tolerance.


2020 ◽  
Vol 22 (1) ◽  
pp. 64-82
Author(s):  
C.K. Koffi ◽  
A. Lourme-Ruiz ◽  
H. Djoudi ◽  
E. Bouquet ◽  
S. Dury ◽  
...  

Wild tree resources are known to play an important role in local stakeholders' livelihoods particularly in the food and nutrition security of people living in semi-arid sub-Saharan Africa. Based on a comprehensive review of the literature, this article examines the relative importance of the contributions of tree resources to food and nutrition security for rural households, while considering alternative causal pathways. The main conclusions of the review are that most studies provide useful evidence on specific contributions of tree products to food and nutritional security, and for whom. However, detailed data on the actual contribution of tree products are still lacking. In addition, we argue that the concept of access as a pillar of food security is not sophisticated enough to understand the landscape dynamics and the socio-economic relations at the nexus of food security and rights of access. Links are needed to better understand the underlying processes in the definition of each stakeholder's rights of access to tree resources in a context of rapidly changing landscapes, and how income generated by tree resources contributes to food and nutrition security. An approach to food security based on rights of access would advance our understanding of their use and tackle the root causes of food deficiency based on different social groups. In light of current patterns of access to tree food for different stakeholders, including women and children, an intersectional approach that accounts for age, gender, ethnicity and wealth would benefit food security research by a more targeted and discerning approach to existing rights of access and to the roles of different community members.


2015 ◽  
Vol 133 (2) ◽  
pp. 283-299 ◽  
Author(s):  
Monica Fisher ◽  
Tsedeke Abate ◽  
Rodney W. Lunduka ◽  
Woinishet Asnake ◽  
Yoseph Alemayehu ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 144
Author(s):  
Forkwa Tengweh Fombong ◽  
John Kinyuru ◽  
Jeremiah Ng’ang’a ◽  
Monica Ayieko ◽  
Chrysantus Mbi Tanga ◽  
...  

Edible orthopterans (grasshoppers, crickets, and locusts) are major delicacies, especially across sub-Saharan Africa. Their promotion as food ingredients is increasingly gaining momentum. This study evaluates the nutritional profiles of three widely consumed orthopterans: Gryllus bimaculatus, Locusta migratoria, and Schistocerca gregaria after blanching and oven-drying. All three species had high protein (65.3, 54.2, and 61.4% on a dry matter (DM) basis for G. bimaculatus, L. migratoria, and S. gregaria, respectively) and fat contents. Oleic (22.9–40.8%) and palmitic (26.1–43.0%) were the two most abundant fatty acids. All essential amino acids (in mg/100 g protein) were present, with glutamic acid (120–131), alanine (90.2–123), and leucine (82.3–84.6) being the most abundant. The minerals (in mg/100 g dry matter) potassium (796–1309) and phosphorus (697–968) were moderately high, and iron (4.60–7.31), zinc (12.7–24.9), manganese (0.40–7.15), and copper (1.20–4.86) were also observed in the samples. Vitamin B12 contents were high (0.22–1.35 µg/100 g dry matter). Our findings demonstrate that the excellent nutritional profile of the three processed insects could serve as promising alternative ingredients for improving food and nutritional security.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gabriel V. Nkomo ◽  
Moosa M. Sedibe ◽  
Maletsema A. Mofokeng

Cowpea (Vigna unguiculata L. Walp. L) is an important leguminous crop largely grown by smallholder farmers in sub-Saharan Africa for food security and animal feed. The objective of this study was to review the production constraints and improvement strategies of cowpea genotypes for drought tolerance. Data were analysed through use of literature review from various sources. In sub-Saharan Africa, cowpeas are produced mainly from West Africa, which accounts for 60% of worldwide production. A lot of pests and diseases affect cowpeas, and this often results in total crop loss. Through continuous improvement, many new cultivars are continually being identified and genetically characterised, and it is thus necessary to evaluate these new lines under different environments. There is a need for multidisciplinary collaborations among breeders and other relevant stakeholders such as farmer and extension workers because the improved cultivars must be according to the farmers preferred traits. Due to declining rainfall pattern in sub-Saharan Africa, there is an urgent requirement for cowpea breeding programmes that focus on developing varieties with short maturity, drought, pest, and disease tolerance. The present review discusses the constraints and improvement strategies of cowpea varieties for drought tolerance.


2019 ◽  
Author(s):  
Stefano Lonardi ◽  
María Muñoz-Amatriaín ◽  
Qihua Liang ◽  
Shengqiang Shu ◽  
Steve I. Wanamaker ◽  
...  

ABSTRACTCowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. A high-quality assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single molecule real-time sequencing, optical and genetic mapping, and a novel assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared to other warm-season legumes that have been sequenced. A surprising outcome of this study is the identification of a chromosomal inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence also facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A new numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris).


Sign in / Sign up

Export Citation Format

Share Document