scholarly journals Osteoarthritis and Toll-Like Receptors: When Innate Immunity Meets Chondrocyte Apoptosis

Biology ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Goncalo Barreto ◽  
Mikko Manninen ◽  
Kari K. Eklund

Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors (TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis. The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their relevance as candidates for novel disease-modifying OA drugs (DMOADs).

2020 ◽  
Author(s):  
Quentin Marquant ◽  
Daphné Laubreton ◽  
Carole Drajac ◽  
Elliot Mathieu ◽  
Edwige Bouguyon ◽  
...  

AbstractThe microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota can modulate reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific pathogen-free (SPF) and germ-free (GF) mice. Using SPF and GF mice intranasally exposed to lipopolysaccharide (LPS), a component of Gram-negative bacteria, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.Plain Language summaryMicrobiota represents an important partner of immunologic system at the interface between immune cells and epithelium. It is well known, notably in the gut, that the microbiota contributes in shaping efficient and safe defenses. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. In this study, we postulate that endogenous microbiota could dampen an excessive reactivity of pulmonary tissue to external stimuli. Thus, we sought to study the innate immune reaction switched on by viral or bacterial ligands in respiratory tract cells coming from mice with or without microbiota (germ-free condition, GF). Altogether, our results show a higher inflammatory reaction in GF condition. This study represents a step forward to better establish the link between the microbiota and the reactivity of the lung tissue. Not only these data demonstrate that the microbiota educates the pulmonary innate immune system, but also contributes the emerging concept of using respiratory commensal bacteria as potential next-generation probiotics to prevent susceptibility to respiratory diseases.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78849 ◽  
Author(s):  
Thangam Sudha Velayutham ◽  
Deepthi Kolli ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

2010 ◽  
Vol 186 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Makoto Inoue ◽  
Yasuhiro Moriwaki ◽  
Tomohiro Arikawa ◽  
Yu-Hsun Chen ◽  
Young Joo Oh ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 1213-1225 ◽  
Author(s):  
Tae Kang Kim ◽  
Myung-Shik Lee

The importance of innate immunity in host defense and inflammatory responses has been clearly demonstrated after the discovery of innate immune receptors such as Toll-like receptors (TLRs) or Nucleotide-binding oligomerization domain-containing protein (Nod)-like receptors (NLRs). Innate immunity also plays a critical role in diverse pathological conditions including autoimmune diseases such as type 1 diabetes (T1D). In particular, the role of a variety of innate immune receptors in T1D has been demonstrated using mice with targeted disruption of such innate immune receptors. Here, we discuss recent findings showing the role of innate immunity in T1D that were obtained mostly from studies of genetic mouse models of innate immune receptors. In addition, the role of innate immune receptors involved in the pathogenesis of T1D in sensing death-associated molecular patterns (DAMPs) released from dead cells or pathogen-associated molecular patterns (PAMPs) will also be covered. Elucidation of the role of innate immune receptors in T1D and the nature of DAMPs sensed by such receptors may lead to the development of new therapeutic modalities against T1D.


Lupus ◽  
2018 ◽  
Vol 27 (12) ◽  
pp. 1898-1902 ◽  
Author(s):  
F Pan ◽  
W Tang ◽  
Z Zhou ◽  
G Gilkeson ◽  
R Lang ◽  
...  

Monocytes play an important role in inducing host systemic immunity against invading pathogens and inflammatory responses. After activation, monocytes migrate to tissue sites, where they initiate both innate and adaptive immune responses, and become macrophages. Although mucosal macrophages produce inflammatory cytokines in response to pathogens, the perturbations in innate immune signaling pathway have been implicated in autoimmune diseases such as systemic lupus erythematosus (SLE). In this review, we focus on the role of human macrophages in intestinal innate immune responses, homeostasis, and SLE disease. We further discuss sex differences in the intestinal macrophages and their role in the physiology and pathogenesis of SLE.


2011 ◽  
Vol 122 (5) ◽  
pp. 203-214 ◽  
Author(s):  
Mohan R. Dasu ◽  
Sandra Ramirez ◽  
Roslyn R. Isseroff

Diabetes is a mutifactorial metabolic disorder that leads to a number of complications. Diabetes is estimated to affect 36 million people in the U.S.A., and the prevalence of diagnosed and undiagnosed diabetes is at 9.3% and continues to rise. Evidence from experimental animal models as well as humans has indicated that systemic inflammation plays a role in the pathophysiological processes of diabetes and is facilitated by innate immune responses. TLRs (Toll-like receptors) are key innate immune receptors that recognize conserved PAMPs (pathogen-associated molecular patterns), induce inflammatory responses essential for host defences and initiate an adaptive immune response. Although TLR expression is increased in a plethora of inflammatory disorders, the effects of metabolic aberrations on TLRs and their role in diabetes and its complications is still emerging. In the present paper, we provide a systematic review on how TLRs play a detrimental role in the pathogenic processes [increased blood sugar, NEFAs (non-esterified ‘free’ fatty acids), cytokines and ROS (reactive oxygen species)] that manifest diabetes. Furthermore, we will highlight some of the therapeutic strategies targeted at decreasing TLRs to abrogate inflammation in diabetes that may eventually result in decreased complications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huifang Zhu ◽  
Yan-Dong Tang ◽  
Guoqing Zhan ◽  
Chenhe Su ◽  
Chunfu Zheng

Poly (adenosine diphosphate-ribose) polymerases (PARPs) are a family of proteins responsible for transferring ADP-ribose groups to target proteins to initiate the ADP-ribosylation, a highly conserved and fundamental post-translational modification in all organisms. PARPs play important roles in various cellular functions, including regulating chromatin structure, transcription, replication, recombination, and DNA repair. Several studies have recently converged on the widespread involvement of PARPs and ADP-Ribosylation reaction in mammalian innate immunity. Here, we provide an overview of the emerging roles of PARPs family and ADP-ribosylation in regulating the host’s innate immune responses involved in cancers, pathogenic infections, and inflammations, which will help discover and design new molecular targets for cancers, pathogenic infections, and inflammations.


Sign in / Sign up

Export Citation Format

Share Document