scholarly journals STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects

Biology ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 126
Author(s):  
Milad Ashrafizadeh ◽  
Ali Zarrabi ◽  
Sima Orouei ◽  
Vahideh Zarrin ◽  
Ebrahim Rahmani Moghadam ◽  
...  

Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.

2020 ◽  
Vol 20 (6) ◽  
pp. 1-1
Author(s):  
Xiao-Mei Li ◽  
Yan-Yan Jiao ◽  
Bao-Hong Luan ◽  
Hong-Xia Wu ◽  
Rong-Rong Wang ◽  
...  

2020 ◽  
Author(s):  
Xiaodong Huo ◽  
Huixing Wang ◽  
Ning Jiang ◽  
Kuo Yang ◽  
Bin Huo ◽  
...  

Abstract Background: Accumulating evidence has indicated the remarkable roles of long non-coding RNAs (lncRNAs) as oncogenes or tumor suppressors in many malignancies. The involvement of lncRNA GATA6-AS1 in cancers remains largely undiscovered. Herein, our research was aimed at elucidating the function and mechanism of GATA6-AS1 in lung adenocarcinoma (LUAD).Methods: Gene expression was measured through qRT-PCR and WB. Cell proliferation ratio was determined using CCK-8 and EdU assays. Cell apoptosis ratio was determined using TUNEL and flow cytometry assays. Molecular interactions were examined through RIP, RNA pull-down and luciferase reporter assays.Results: GATA6-AS1 expression was markedly down-regulated in LUAD cell lines. GATA6-AS1 could inhibit LUAD cell proliferation and promote cell apoptosis. Mechanistically, GATA6-AS1 was identified as the molecular sponge for miR-331-3p, whose knockdown in LUAD cells could reinforce the tumor-suppressing effects of GATA6-AS1 overexpression. Moreover, GATA6-AS1 functions as a competing endogenous RNA (ceRNA) through sequestering miR-331-3p to deregulate SOCS1, thus inhibiting JAK2/STAT3 signaling pathway and suppressing LUAD cell viability.Conclusions: These results demonstrate the tumor-suppressing function and mechanism of lncRNA GATA6-AS1 in LUAD cells. The axis of GATA6-AS1/miR-331-3p/SOCS1/JAK2/STAT3 can be adopted as a novel approach for LUAD treatment.


Neoplasma ◽  
2019 ◽  
Vol 66 (01) ◽  
pp. 101-108 ◽  
Author(s):  
D. Liu ◽  
M. Y. Zhang ◽  
Z. Chu ◽  
M. Zhang

2021 ◽  
Vol 8 ◽  
Author(s):  
Zengliang Li ◽  
Hao Fan ◽  
Wangwang Chen ◽  
Jian Xiao ◽  
Xiang Ma ◽  
...  

MicroRNAs (miRNAs) are emerging as significant regulators of the tumorigenesis of gastric cancer (GC), and may be effective biomarkers for diagnosis, prognosis, and therapeutic targeting for GC. In this study, miR-653-5p was found to be significantly upregulated in GC tissues, serum, and cell lines and was strongly associated with poor prognosis in patients with GC. Furthermore, miR-653-5p promoted GC cell proliferation and metastasis in vivo and in vitro. Suppressor of cytokine signaling 6 (SOCS6) was directly targeted by miR-653-5p, and SOCS6 attenuated miR-653-5p-mediated GC cell growth, migration, and invasion. In addition, SOCS6-mediated inactivation of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was also reversed by the administration of miR-653-5p. The findings from this study support a novel regulatory axis between miR-653-5p, SOCS6, and JAK2/STAT3 that may be a target for diagnosis and therapeutic intervention for GC.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770533 ◽  
Author(s):  
Li Zheng ◽  
Jiangtao Chen ◽  
Zhongyong Zhou ◽  
Zhikuan He

Long non-coding RNA HOXD-AS1 (HOXD cluster antisense RNA 1) has been demonstrated to be closely associated with the progression of several tumors. However, the biological function of HOXD-AS1 and the underlying molecular mechanism in gastric cancer are still unclear. The expression of HOXD-AS1 in gastric cancer cell lines was evaluated by quantitative real-time polymerase chain reaction. The association of HOXD-AS1 expression and clinical parameters was statistically analyzed by chi-square test. Cell viability, colony formation capacity, and phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 3 in treated SGC-7901 and BGC-823 cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and western blot analysis, respectively. The results indicated that HOXD-AS1 was significantly upregulated in gastric cancer cells and clinically involved in tumor size, invasion depth, tumor–node–metastasis stages, regional lymph nodes, lymphatic metastasis, as well as distant metastasis. HOXD-AS1 knockdown dramatically inhibited gastric cancer cell proliferation, colony formation capacity, and phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 3 in vitro. In addition, HOXD-AS1 overexpression significantly promoted gastric cancer cell proliferation and colony formation capacity, whereas both Janus kinase small interfering RNAs and Janus kinase 2 inhibitor AG490 overturned these effects. Furthermore, xenograft assays confirmed the biological function of HOXD-AS1 in vivo. Taken together, our data elucidate that knockdown of HOXD-AS1 dramatically suppresses gastric cancer cell growth by inactivating the Janus kinase 2/signal transducer and activator of transcription 3 pathway in vitro and in vivo, contributing to a better understanding of gastric cancer pathogenesis and providing a possible theoretical foundation for long non-coding RNA–directed diagnosis and therapy against this disease.


Sign in / Sign up

Export Citation Format

Share Document