scholarly journals Inclusion of Hydroxycinnamic Acids in Methylated Cyclodextrins: Host-Guest Interactions and Effects on Guest Thermal Stability

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Lee E. Hunt ◽  
Susan A. Bourne ◽  
Mino R. Caira

There is ongoing interest in exploiting the antioxidant activity and other medicinal properties of natural monophenolic/polyphenolic compounds, but their generally low aqueous solubility limits their applications. Numerous studies have been undertaken to solubilize such compounds via supramolecular derivatization with co-crystal formation with biocompatible coformer molecules and cyclodextrin (CD) complexation being two successful approaches. In this study, eight new crystalline products obtained by complexation between methylated cyclodextrins and the bioactive phenolic acids (ferulic, hydroferulic, caffeic, and p-coumaric acids) were investigated using thermal analysis (hot stage microscopy, thermogravimetry, differential scanning calorimetry) and X-ray diffraction. All of the complexes crystallized as ternary systems containing the host CD, a phenolic acid guest, and water. On heating each complex, the primary thermal events were dehydration and liberation of the respective phenolic acid component, the mass loss for the latter step enabling determination of the host-guest stoichiometry. Systematic examination of the X-ray crystal structures of the eight complexes enabled their classification according to the extent of inclusion of each guest molecule within the cavity of its respective CD molecule. This revealed three CD inclusion compounds with full guest encapsulation, three with partial guest inclusion, and two that belong to the rare class of ‘non-inclusion’ compounds.

CrystEngComm ◽  
2018 ◽  
Vol 20 (22) ◽  
pp. 3105-3116 ◽  
Author(s):  
Roman Svoboda ◽  
Roman Bulánek ◽  
Dušan Galusek ◽  
Roghayeh Hadidimasouleh ◽  
Yadolah Ganjkhanlou

Differential scanning calorimetry and in situ X-ray diffraction analysis were used to study the products and mechanism of crystal formation in VOx–ZrO2 ceramics.


2011 ◽  
Vol 317-319 ◽  
pp. 185-188 ◽  
Author(s):  
Pornsak Sriamornsak ◽  
Srisuda Kontong ◽  
Yotsanan Weerapol ◽  
Jurairat Nunthanid ◽  
Srisagul Sungthongjeen ◽  
...  

The aim of this study was to manufacture the ternary solid dispersions composed of nifedipine, Eudragit® E and adsorbent. Dissolution enhancement of nifedipine was also investigated. The inert solid carriers were added in the mixtures of nifedipine and Eudragit® E at varying ratios. The physicochemical properties of ternary systems, compared to physical mixtures, were analyzed using powder x-ray diffraction (PXRD) and differential scanning calorimetry (DSC). The dissolution of nifedipine from ternary systems was compared to the drug alone. The influence of drug:polymer: adsorbent ratio and type of adsorbent on the dissolution rate of the drug was also evaluated. The PXRD and DSC results of the systems with high amount of polymer showed that the drug was present in an amorphous form. On the other hand, the diffraction patterns and DSC thermograms of the physical mixtures revealed that to some extent the drug was present in a crystalline form. The results from this study demonstrated that an improvement in dissolution rate of nifedipine with Eudragit® E and adsorbents was obtained.


2020 ◽  
Vol 27 (1) ◽  
pp. 111-120
Author(s):  
Alaa Yosf Bazeed ◽  
Ahmed Nouh ◽  
Ebtessam Ahmed Essa ◽  
Gamal El Maghraby

Background: Cilostazol is an anti-platelets drug with considerable antithrombotic effects in vivo. Therefore, it is widely used by elderly patients. However, it suffers from poor bioavailability due to its low aqueous solubility. The objective of this work was to enhance the dissolution of cilostazol with the aim of formulating fast dissolving tablets for geriatrics and those of swallowing difficulties. Methods: Ethanol-assisted co-grinding of cilostazol with sugar-based excipients was adopted. Sucralose and mannitol were used for this purpose as hydrophilic excipient as well as taste improving agents. The obtained products were investigated regarding differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and in vitro drug dissolution. Fast disintegrating tablets were prepared and evaluated. Results: Thermal behavior of the developed products reflected reduced crystallinity, it also suggested possible existence of new crystalline species with sucralose. Eutexia was also suggested for mannitol mixtures, that was supported by X-ray diffraction data. SEM indicated size reduction with the deposition of the drug as submicron particles over the excipient surface. Co-processing markedly improved cilostazol dissolution compared to unprocessed drug. The optimized formulations were successively formulated into fast disintegrating tablets. Conclusion: This investigation introduced the wet grinding strategy with sugar excipients as a platform for the formulation of easy to use tablets with optimum drug release.


2020 ◽  
Vol 88 (2) ◽  
pp. 21
Author(s):  
Erizal Zaini ◽  
Afriyani ◽  
Lili Fitriani ◽  
Friardi Ismed ◽  
Ayano Horikawa ◽  
...  

The objectives of this study were to prepare and characterize a novel piperine–succinic acid multicomponent crystal phase and to evaluate the improvement in the solubility and dissolution rate of piperine when prepared in the multicomponent crystal formation. The solid-state characterization of the novel multicomponent crystal was performed by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform-infrared (FT-IR) spectroscopy. Solubility and dissolution rate profiles were evaluated in distilled water. The physical stability was evaluated under high relative humidity (75% and 100% RH). The determination of the single crystal X-ray diffraction structure revealed that this novel multicomponent crystal was a cocrystalline phase of piperine–succinic acid (2:1 molar ratio). The differential scanning calorimetry thermogram of the cocrystal showed a single and sharp endothermic peak at 110.49 °C. The cocrystal resulted in greater solubility and a faster dissolution rate of piperine than intact piperine. This improvement was a result of the formation of a channel structure in the cocrystal. In addition, the cocrystal was stable under a humid condition.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 4
Author(s):  
Hadj Bellagra ◽  
Oksana Nyhmatullina ◽  
Yuri Kogut ◽  
Halyna Myronchuk ◽  
Lyudmyla Piskach

Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid solution ranges of the Pb3Ga2GeS(Se)8 compounds which form in the quasi-ternary systems PbS(Se)−Ga2S(Se)3−GeS(Se)2 at the cross of the PbGa2S(Se)4−Pb2GeS(Se)4 and PbS(Se)−PbGa2GeS(Se)6 sections. The quaternary sulfide melts congruently at 943 K. The crystallization of the Pb4Ga4GeSe12 phase is associated with the ternary peritectic process Lp + PbSe ↔ PbGa2S4 + Pb3Ga2GeSe8 at 868 K. For the single crystal studies, Pb4Ga4GeS(Se)12 were pre-synthesized by co-melting high-purity elements. The X-ray diffraction results confirm that these compounds possess non-centrosymmetric crystal structure (tetragonal symmetry, space group P–421c). The crystals were grown by the vertical Bridgman method in a two-zone furnace. The starting composition was stoichiometric for Pb4Ga4GeS12, and the solution-melt method was used for the selenide Pb4Ga4GeSe12. The obtained value of the bandgap energy for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals is 1.86 and 2.28 eV, respectively. Experimental measurements of the spectral distribution of photoconductivity for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals exhibit the presence of two spectral maxima. The first lies in the region of 570 (2.17 eV) and 680 nm (1.82 eV), respectively, and matches the optical bandgap estimates well. The locations of the admixture maxima at about 1030 (1.20 eV) and 1340 nm (0.92 eV), respectively, agree satisfactorily with the calculated energy positions of the defects vs. and VSe.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Alessio Ausili ◽  
Inés Rodríguez-González ◽  
Alejandro Torrecillas ◽  
José A. Teruel ◽  
Juan C. Gómez-Fernández

The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and 31P-NMR spectroscopy were used to study the effect of DES on the Lα-to-HII phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the 1H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers.


Sign in / Sign up

Export Citation Format

Share Document