scholarly journals Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 507
Author(s):  
Eduardo Troncoso-Ortega ◽  
Rosario del P. Castillo ◽  
Pablo Reyes-Contreras ◽  
Patricia Castaño-Rivera ◽  
Regis Teixeira Mendonça ◽  
...  

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.

2012 ◽  
Vol 42 ◽  
pp. 97-106 ◽  
Author(s):  
R. Martín-Sampedro ◽  
M.E. Eugenio ◽  
J.C. García ◽  
F. Lopez ◽  
J.C. Villar ◽  
...  

Holzforschung ◽  
2000 ◽  
Vol 54 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Ana Paula Duarte ◽  
Danielle Robert ◽  
Dominique Lachenal

Summary Residual lignins of Eucalyptus globulus kraft pulp were shown to be structurally different depending upon the type of extraction chosen. Enzymatic hydrolysis releases a residual lignin with a well preserved etherified structure but substantially contaminated by protein and carbohydrate moieties coming from the enzyme. Moreover, the extraction yield is poor and obviously it does not work as well as in the case of softwood kraft pulp. The residual lignin extracted by acid hydrolysis has less etherified units and more free phenolic functions than that of the enzymatic hydrolysis. It contains some unsaturated structures but no carbohydrate contaminants. Comparison with Milled Wood Lignin (MWL) treated under the acid hydrolysis conditions shows that ether splitting occurs during this extraction. The different residual lignin fractions were characterised by HPSEC, FT-IR, 13C NMR and sugar analysis.


2019 ◽  
Vol 12 (2) ◽  
pp. 185-191
Author(s):  
Andrej Pažitný

Abstract Pretreatment of particles obtained from lignocellulosic materials by steam explosion with indirect control by enzymatic hydrolysis has been studied. The dendromass pretreatment model has been applied for recycled fibreboard and particle board based on softwood. Their structure and chemical composition partly predetermine these lignocellulosic materials consisting of a mixture of spruce and fir particles also for bioethanol production. Optimum steam explosion temperature of 205 °C was determined based on the concentration of total monosaccharides — glucose, xylose and arabinose, among all experimentally prepared hydrolysates. This corresponds to basic conditions for fine disintegration of biomass to lignocellulosic structure with good holocellulose accessibility. Particles obtained from fibreboard and particle board primarily consisting of softwood without steam explosion pretreatment provide relatively low cellulose accessibility for commercial enzymes activity while monosaccharides concentration is partly reduced because of torrefaction at high temperatures. The concentration of monosaccharides in hydrolysates was determined for original sample and each steam explosion temperature. Based on the steam explosion conditions, the effect of severity factors was investigated to find optimum pretreatment conditions to increase accessibility of softwood cellulose and hemicelluloses. The identified optimum severity factor RO = 4.09 matches the optimum steam explosion temperature of 205 °C and the residence time of 10 minutes.


2011 ◽  
Vol 14 (3) ◽  
pp. 87-96
Author(s):  
Quyen Huynh ◽  
Tuan Dinh Phan

The main concern in converting sugarcane bagasse to bio-butanol fuel is the conversion of the polysaccharides by enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as a pretreatment method. Steam explosion treatment of biomass had been previously used to increase cellulose accessibility [1,3,5,6,8,9]. Following steam explosion pretreatment, sugarcane bagasse was subjected to enzymatic hydrolysis employing the Acremonium Cellulase as the reactant. The sugars released by enzymatic hydrolysis were further fermented by Clostridium Beijerinckii. Raw sugarcane bagasse was found to have the polysaccharides content of 56.24%. The fiber loss during the steam explosion treatment was high, up to 67.11%. Steam explosion treatment on sugarcane bagasse increased the enzymatic hydrolysis capability of cellulose. After steam explosion treatment at temperature of 224oC for 2 minutes, the cellulose hydrolysis conversion efficiency could reach 98.04% by applying Acremonium Cellulase for 72 hours. It has been stated that steam explosion was suitable to improve cellulose content and consequently improve fermentable glucose yield from enzymatic hydrolysis while drastically reducing hemicellulose content of the fibers. Butanol has been successfully produced from the sugarcane bagasse hydrolysate in acetone-butanol-ethanol (ABE) process applying C. Beijerinckii.


2019 ◽  
Vol 2 (2) ◽  
pp. 47-48
Author(s):  
Megan Joy ◽  
Alex Brown ◽  
Arturo Mora Gomez ◽  
Maria Rossano-Tapia ◽  
Shyam Parshotam

Nucleobases (adenine, cytosine, guanine, and uracil), the four molecules that forms RNA, have been found to be useful in probing in the human body when modified because they can emit light. Non-modified nucleobases do not exhibit emissive properties and cannot be used as probes. Some of the modifications include the substitution of nitrogen atoms with sulfur and selenium, and the resulting modified nucleobases give place to the so-called tz- and ts- RNA alphabets, respectively. Therefore, the aim of this project was to provide insights about the viability, from a computational perspective, of using the modified nucleobases as probes, evaluating the differences in thermochemical, structural and emissive properties of the modified nucleobases with respect to the non-modified ones. Nucleobases can coexist with other modified nucleobases or tautomers, molecules that differ due to the change in position of hydrogen atoms in a molecule’s structure and as a result have different physical and chemical properties. The thermochemical properties evaluation mainly consisted in the computation of the relative Gibbs Free Energy (G), which is related to the fraction F, an index of the relative population among tautomers. This was done using Gaussian 09 software by performing geometry analysis and frequency computations on each one of the tautomers. By comparing the equilibrium fractions, it was determined that in both cases, tz- and ts- guanine and cytosine exist principally in the form of one of their tautomers (Cytosine 2 and Guanine 2) as in the case of the non-modified cases. After confirming which tz- and ts- tautomers were the ones with the largest probable population, infrared (IR) and ultraviolet-visible (UV-vis) spectra were obtained. The IR spectra of selenium and sulfur tautomers of guanine and cytosine indicated that the tautomers had peaks at similar frequencies with respect to each other, however, the intensities varied, implying slight structural changes between the tautomers. On the other hand, the UV-vis spectra showed a change in peak positions between the tautomers with sulfur and selenium, suggesting that the change between sulfur and selenium has an effect on the spectra by shifting the peaks from the original molecules’ λmax values. Their relative population fractions show that only the canonical forms of the modified nucleobases exist in a larger extent than the rest of their tautomer forms. In addition, the features in their UV-vis and IR spectra allow these tautomers to be differentiated from each other.


2008 ◽  
Vol 62 (11) ◽  
pp. 1274-1279 ◽  
Author(s):  
Feride Severcan ◽  
Kurtulus Gokduman ◽  
Ayca Dogan ◽  
Sukran Bolay ◽  
Saadet Gokalp

In-office and at-home bleaching techniques are widely used methods for the whitening of teeth. However, the safety of these techniques has not been clarified yet. The aim of the current study is to investigate the in-office- and at-home-bleaching-induced structural and quantitative changes in human enamel and dentin at the molecular level, under in vitro conditions. The Fourier transform mid-infrared (mid-FT-IR) spectroscopic technique was used to monitor bleaching-induced structural changes. Band frequency and intensity values of major absorptions such as amide A, amide I, phosphate (PO4), and carbonate (CO3−2) bands, for treatment groups and control, were measured and compared. The results revealed that both procedures have negligible effects on dentin constituents. In office-bleached enamel, in addition to demineralization, a decrease in protein and polysaccharide concentrations, mineral-to-protein ratio, and the strength of hydrogen bonds around NH groups, as well as a change in protein secondary structure were observed. The protein structure changed from β-sheet to random coil, which is an indication of protein denaturation. However, no significant variations were observed for at-home bleached enamel. The control, at-home, and in-office bleached enamel samples were differentiated with a high accuracy using cluster analysis based on FT-IR data. This study revealed that office bleaching caused deleterious alterations in the composition and structure of enamel that significantly affected the crystallinity and mineralization of the tissue. Therefore, at-home bleaching seems to be much safer than in-office bleaching in terms of molecular variations.


Author(s):  
Kooshan Nayebzadeh ◽  
Jianshe Chen ◽  
SM Mohammad Mousavi

The effect of addition of xanthan gum (0.05, 0.1, 0.15, 0.25% weight/volume) on the formation and rheology of whey protein isolate (WPI)-xanthan gum gels has been investigated at neutral pH. The elastic modulus (G') values of the gelling test were compared. Low concentration of xanthan added (<0.05%,w/v) has a synergistic effect on the gel strength depend on phase separation, so that whey proteins concentrated in their phase and finally mixed gels with xanthan would be stronger than WPI gels. At higher xanthan concentration (> 0.05%, w/v), antagonist effect was observed by reducing the connection between clusters of whey protein by xanthan, so aggregation disruption and a related decrease in (G'). The phase separation microstructure of WPI-stabilized emulsion containing xanthan gum added has been investigated by rheology and confocal laser scanning microscopy. Xanthan was stained with Fluorescein 5(6)-isothiocyanate (FITC). Low xanthan concentration addition lead to depletion flocculation and increasing the xanthan concentration cause to increase the viscoelasticity of aqueous phase, so retarded macroscopic phase separation over period investigated. Structural changes in emulsion were observed in viscoelastic properties of separated phase in the rheometer. The CLSM image shows different phase which have different viscoelastic properties; xanthan-rich region transforms into the spherical shape which has the lowest interfacial energy and gradually two separated ultimately.


Sign in / Sign up

Export Citation Format

Share Document