scholarly journals DNMT3A Mutation-Induced CDK1 Overexpression Promotes Leukemogenesis by Modulating the Interaction between EZH2 and DNMT3A

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 781
Author(s):  
Ying Yang ◽  
Yujun Dai ◽  
Xuejiao Yang ◽  
Songfang Wu ◽  
Yueying Wang

DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.

2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii46-iii46
Author(s):  
A C Fuentes-Fayos ◽  
M C Vázquez-Borrego ◽  
J M Jiménez-Vacas ◽  
L Bejarano ◽  
C Blanco-Acevedo ◽  
...  

Abstract Glioblastomas (GBMs) remain the deadliest human brain tumors, with poor prognosis despite years of research. Currently, standard therapeutic strategies to treat GBM are not efficient and common survival from diagnosis is ~12–16 months. Thus, identification of new diagnostic/prognostic/therapeutic tools to tackle GBMs is crucial. Emerging evidence indicates that the cellular machinery controlling alternative splicing is altered in tumor pathologies, leading to oncogenic splicing events linked to tumor progression. Accordingly, we aimed to determine the expression pattern of the spliceosome components (SCs) and splicing factors (SFs) in high-grade astrocytomas (HGAs), mostly GBMs, and to ascertain the potential consequences of its dysregulation on GBM development. To this end, expression levels of SCs core and selected SFs were measured using a customized-microfluidic qPCR array in a well-characterized cohort of HGAs (n=33). Our results unveiled a profound alteration in the expression of multiple SCs and SFs in HGAs compared to healthy brain control-samples, wherein levels of particular elements (SRSF3/RBM22/PTBP1/RBM3) enabled perfect discrimination between non-pathological vs. tumor human-tissues, and between proneural and mesenchymal-like GBMs vs. control samples in mouse-models. Results were confirmed in an independent validation-cohort (n=49) and available Microarray dataset (Murat), which revealed that the expression of these splicing elements was correlated with relevant tumor markers and with survival. Remarkably, SRSF3/RBM22/PTBP1/RBM3 silencing (using specific siRNAs) decreased several aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere formation, VEGFA secretion, etc.) and induced apoptosis, being SRSF3 the most relevant element affecting these parameters. Hence, a preclinical mouse model (U87MG-xenografts) with SRSF3 silencing drastically decreased in vivo tumor development/progression (i.e. tumor size, %MKI67, mitosis number, etc.) likely through a molecular/cellular mechanism involving the regulation of PDGFRB expression and its associated oncogenic signaling pathways. Overall, our results demonstrate that there is a profound dysregulation of the splicing machinery (spliceosome core and SFs) in HGAs/GBMs, which is directly associated to the development/progression of GBMs. Furthermore, this study reveals that SRSF3 can be a novel biomarker of malignancy and a potential therapeutic target to impair GBMs progression.


2019 ◽  
Vol 17 (6) ◽  
pp. 1241-1252 ◽  
Author(s):  
Lisa E. Richter ◽  
Yiqian Wang ◽  
Michelle E. Becker ◽  
Rachel A. Coburn ◽  
Jacob T. Williams ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2870-2870
Author(s):  
Quan Lin ◽  
M. Ludmila Prudkin ◽  
Hagop M. Kantarjian ◽  
Jorge E. Cortes ◽  
Esther Lau ◽  
...  

Abstract Chronic myeloid leukemia (CML) is the most common subtype of chronic myeloproliferative diseases. The disease typically progresses through three clinicopathologic phases: chronic (CP), accelerated (AP), and blast (BP). CML is characterized by the Philadelphia chromosome, which involves the t(9;22)(q34;q11). This aberrant translocation generates the Bcr-Abl fusion gene that leads to constitutive activation of Abl kinase. Abl appears to play a major role in the pathogenesis of CML. In this regard, Abl was shown to interact with a wide array of molecules directly involved in several important cellular biologic functions. Targeted inhibition of Abl, such as by imatinib, has provided an effective therapeutic approach in CML. However, a subset of CML patients, particularly those in BP, demonstrates resistance to imatinib. Janus kinase 3 (Jak3) is a protein tyrosine kinase that plays a role in regulating cell survival primarily by phosphorylation/activation of signal transducers and activators of transcription (Stats). The role of Jak3 in CML is not known. Using Western blotting and immunohistochemical staining, we showed that Jak3 and its activated/phosphorylated form (pJak3) are expressed in two CML cell lines K562 and KBM-5. To study the biologic effects of Jak3 inhibition in CML, we utilized two selective inhibitors of Jak3: WHI-P131 and WHI-P154 (Calbiochem, San Diego, CA), which induced concentration-dependent decrease in pJak3, but not in Jak3. The decrease in pJak3 was associated with a gradual decrease in pStat3 and pStat5. These changes lead to several biologic alterations including decreased cell viability and proliferation, apoptotic cell death, and cell cycle arrest. These alterations were due to significant decrease in Bcl-XL, Mcl-1, and cyclin D3, and upregulation of p27. To explore possible functional interaction between Jak3 and Abl, we performed co-immunoprecipitation studies that demonstrated Jak3 and Abl to be physically associated. Importantly, using an in vitro kinase assay, selective inhibition of Jak3 decreased Abl kinase activity to 61% of its baseline level at 6 h after treatment, which suggests that Jak3 contributes to the constitutive activation of Abl. In further support of the biologic importance of Jak3 in CML, we examined the frequency of expression of Jak3 and pJak3 in 34 bone marrow specimens collected from 25 CML patients classified based on the WHO classification scheme (CP: 9 [7 F; median age = 41 y], AP: 8 [2 F; 56.5 y], BP: 8 [1 F; 53 y]). There was a gradual increase in cells expressing Jak3 with the progression of the disease (48.5%±9.9 in CP, 65.0%±9.6 in AP, and 84.4%±4.0 in BP; P < 0.01 for CP vs. BP, Kruskal-Wallis test). Notably, in the same study cases, pJak3 showed pronounced expression in BP compared with CP and AP (12.0%±6.8 in CP, 15.7%±7.5 in AP, and 70.0%±7.5 in BP; P < 0.001 for CP vs. BP and P < 0.01 for AP vs. BP, Kruskal-Wallis test). In conclusion, our data provide novel evidence that Jak3 plays a significant role in the pathogenesis of CML, at least in part via activation of Abl. In addition, Jak3 expression and activation become more pronounced with the progression of CML from chronic to blast phase. These findings identify Jak3 as a potential therapeutic target in CML, particularly in blast phase where patients are more likely to be resistant to imatinib.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250015 ◽  
Author(s):  
XIAO-PING WANG ◽  
HUAI-NA YU ◽  
TONG-SHENG CHEN

Fluorescence resonance energy transfer (FRET) technology had been widely used to study protein–protein interactions in living cells. In this study, we developed a ROI-PbFRET method to real-time quantitate the FRET efficiency of FRET construct in living cells by combining the region of interest (ROI) function of confocal microscope and partial acceptor photobleaching. We validated the ROI-PbFRET method using GFPs-based FRET constructs including 18AA and SCAT3, and used it to quantitatively monitor the dynamics of caspase-3 activation in single live cells stably expressing SCAT3 during staurosporine (STS)-induced apoptosis. Our results for the first demonstrate that ROI-PbFRET method is a powerful potential tool for detecting the dynamics of molecular interactions in live cells.


1998 ◽  
Vol 72 (11) ◽  
pp. 8586-8596 ◽  
Author(s):  
Xiao Huan Liang ◽  
Linda K. Kleeman ◽  
Hui Hui Jiang ◽  
Gerald Gordon ◽  
James E. Goldman ◽  
...  

ABSTRACT bcl-2, the prototypic cellular antiapoptotic gene, decreases Sindbis virus replication and Sindbis virus-induced apoptosis in mouse brains, resulting in protection against lethal encephalitis. To investigate potential mechanisms by which Bcl-2 protects against central nervous system Sindbis virus infection, we performed a yeast two-hybrid screen to identify Bcl-2-interacting gene products in an adult mouse brain library. We identified a novel 60-kDa coiled-coil protein, Beclin, which we confirmed interacts with Bcl-2 in mammalian cells, using fluorescence resonance energy transfer microscopy. To examine the role of Beclin in Sindbis virus pathogenesis, we constructed recombinant Sindbis virus chimeras that express full-length human Beclin (SIN/beclin), Beclin lacking the putative Bcl-2-binding domain (SIN/beclinΔBcl-2BD), or Beclin containing a premature stop codon near the 5′ terminus (SIN/beclinstop). The survival of mice infected with SIN/beclin was significantly higher (71%) than the survival of mice infected with SIN/beclinΔBcl-2BD (9%) or SIN/beclinstop (7%) (P < 0.001). The brains of mice infected with SIN/beclin had fewer Sindbis virus RNA-positive cells, fewer apoptotic cells, and lower viral titers than the brains of mice infected with SIN/beclinΔBcl-2BD or SIN/beclinstop. These findings demonstrate that Beclin is a novel Bcl-2-interacting cellular protein that may play a role in antiviral host defense.


Sign in / Sign up

Export Citation Format

Share Document