scholarly journals Effect of Chlorpyrifos-Induced Toxicity in Brassica juncea L. by Combination of 24-Epibrassinolide and Plant-Growth- Promoting Rhizobacteria

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 877
Author(s):  
Palak Bakshi ◽  
Rekha Chouhan ◽  
Pooja Sharma ◽  
Bilal Ahmad Mir ◽  
Sumit Gandhi ◽  
...  

Pervasive use of chlorpyrifos (CP), an organophosphorus pesticide, has been proven to be fatal for plant growth, especially at higher concentrations. CP poisoning leads to growth inhibition, chlorosis, browning of roots and lipid and protein degradation, along with membrane dysfunction and nuclear damage. Plants form a linking bridge between the underground and above-ground communities to escape from the unfavourable conditions. Association with beneficial rhizobacteria promotes the growth and development of the plants. Plant hormones are crucial regulators of basically every aspect of plant development. The growing significance of plant hormones in mediating plant–microbe interactions in stress recovery in plants has been extensively highlighted. Hence, the goal of the current study was to investigate the effect of 24-epibrassinolide (EBL) and PGPRs (Pseudomonas aeruginosa (Ma), Burkholderia gladioli (Mb)) on growth and the antioxidative defence system of CP-stressed Brassica juncea L. seedlings. CP toxicity reduced the germination potential, hypocotyl and radicle development and vigour index, which was maximally recuperated after priming with EBL and Mb. CP-exposed seedlings showed higher levels of superoxide anion (O2.−), hydrogen peroxide (H2O2), lipid peroxidation and electrolyte leakage (EL) and a lower level of nitric oxide (NO). In-vivo visualisation of CP-stressed seedlings using a light and fluorescent microscope also revealed the increase in O2.−, H2O2 and lipid peroxidation, and decreased NO levels. The combination of EBL and PGPRs reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) contents and improved the NO level. In CP-stressed seedlings, increased gene expression of defence enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR) and glutathione reductase (GPOX) was seen, with the exception of catalase (CAT) on supplementation with EBL and PGPRs. The activity of nitrate reductase (NR) was likewise shown to increase after treatment with EBL and PGPRs. The results obtained from the present study substantiate sufficient evidence regarding the positive association of EBL and PGPRs in amelioration of CP-induced oxidative stress in Brassica juncea seedlings by strengthening the antioxidative defence machinery.

2020 ◽  
Vol 390 ◽  
pp. 121806 ◽  
Author(s):  
Kanchan Vishwakarma ◽  
Vijay Pratap Singh ◽  
Sheo Mohan Prasad ◽  
Devendra Kumar Chauhan ◽  
Durgesh Kumar Tripathi ◽  
...  

1992 ◽  
Vol 38 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Robert M. Zablotowicz ◽  
Caroline M. Press ◽  
Nicola Lyng ◽  
Gerry L. Brown ◽  
Joseph W. Kloepper

The compatibility of a select group of plant growth promoting rhizobacterial strains with chemicals commonly used as seed treatments was investigated. Strains in several genera (Serratia, Pseudomonas, and coryneform-like bacteria) were found to be tolerant to Vitavax RS (containing lindane, carboxin, and thiram), Epic (iprodione), and (or) captan tested in vitro at commercial rates. Six of 10 strains survived equally, and exhibited similar root colonization, on Vitavax RS treated and nontreated seed. Four of seven strains tested (Serratia spp. and P. fluorescens) were likewise found to be compatible with a captan seed treatment on supersweet corn, using the same criteria. Ability of bacteria to grow on pesticide-amended media did not always indicate compatibility with chemical seed treatments in vivo. A greenhouse study demonstrated that enhanced emergence occurred with the coryneform-like strain 44-9 on Vitavax RS treated canola seed grown under conditions favoring disease due to Rhizoctonia solani. The ability to combine plant growth promoting rhizobacterial strains with current agrichemicals for plant growth stimulation and disease control is indicated. Key words: pesticide compatibility, Pseudomonas, agrichemicals, Serratia, damping-off, plant growth promoting rhizobacteria.


2021 ◽  
Vol 6 (2) ◽  
pp. 255-263
Author(s):  
Indah Juwita Sari ◽  
Indria Wahyuni ◽  
Rida Oktorida Khastini ◽  
Ewi Awaliyati ◽  
Andriana Susilowati ◽  
...  

Plant Growth Promoting Bacteria Rhizobacteria (PGPR) is one of the potential bacteria to enhance of Capsicum annuum through inhabitation the growth of pathogenic fungi. This study aimed to characterize PGPR in chili plants (Capsicum annuum). PGPR was isolated from the soil habitat of the red chili plant in Cilegon, Indonesia. Screening was then carried out with the dual culture method on Petri dishes and tested through in vivo method on the red chili plant. The selected bacteria were characterized morphologically, biochemically, and physiologically. The results revealed that there were 14 single isolates of bacteria from the roots of the red chili plants. The five single bacterial isolates, namely Azostobacter, Azospirillum, Pseudomonas, Serratia, and Beijerinckia have good potential as PGPR based on multiple culture screening by producing clear zones and positively effect the growth of chili plants.


Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 223
Author(s):  
Clara de la Osa ◽  
Miguel Ángel Rodríguez-Carvajal ◽  
Jacinto Gandullo ◽  
Clara Aranda ◽  
Manuel Megías ◽  
...  

Background: The application of microorganisms as bioestimulants in order to increase the yield and/or quality of agricultural products is becoming a widely used practice in many countries. In this work, five plant growth-promoting rhizobacteria (PGPR), isolated from cultivated rice paddy soils, were selected for their plant growth-promoting capacities (e.g., auxin synthesis, chitinase activity, phosphate solubilisation and siderophores production). Two different tomato cultivars were inoculated, Tres Cantos and cherry. Plants were grown under greenhouse conditions and different phenotypic characteristics were analysed at the time of harvesting. Results: Tres Cantos plants inoculated with PGPR produced less biomass but larger fruits. However, the photosynthetic rate was barely affected. Several antioxidant activities were upregulated in these plants, and no oxidative damage in terms of lipid peroxidation was observed. Finally, ripe fruits accumulated less sugar but, interestingly, more lycopene. By contrast, inoculation of cherry plants with PGPR had no effect on biomass, although photosynthesis was slightly affected, and the productivity was similar to the control plants. In addition, antioxidant activities were downregulated and a higher lipid peroxidation was detected. However, neither sugar nor lycopene accumulation was altered. Conclusion: These results support the use of microorganisms isolated from agricultural soils as interesting tools to manipulate the level of important bioactive molecules in plants. However, this effect seems to be very specific, even at the variety level, and deeper analyses are necessary to assess their use for specific applications.


2021 ◽  
Vol 17 (2) ◽  
pp. 87-89
Author(s):  
Dahlan Dahlan ◽  
Ummu Aimanah ◽  
Lipebri Lipebri

Kajian ini bertujuan mengetahui respon penggunaan tanaman sawi terhadap pemberian PGPR akar alang-alang dan untuk mengetahui respons petani terkait pembuatan dan pengaplikasian PGPR akar alang-alang. Kajian di laksanakan di Lahan Kelompok Tani Bakung II Kelurahan Samata Kecamatan Somba Opu Kabupaten Gowa dan kegiatan penyuluhan pertanian di laksanakan di Kelurahan Samata Kecamatan Somba Opu Kabupaten Gowa. Metode kajian disusun berdasarkan Rancangan Acak Kelompok (RAK) yang terdiri dari 4 perlakuan dan 4 ulangan sehingga diperoleh 16 plot. Hasil analisis dengan menggunakan uji F menunjukkan respons tanaman sawi terhadap pemberian PGPR akar alang-alang pada kaji widya yang dilakukan terlihat pada perlakuan minggu ke 2 menunjukan perbedaan yang nyata. Jumlah daun tidak memberikan pengaruh yang nyata. Berat basah produksi terbaik pada P3 98,56 gram. Respons petani terhadap penyuluhan teknologi pemberian PGPR akar alang-alang adalah meningkatkan pengetahuan 39,74 %, sikap 38,22 % dan keterampilan 46,66 %. Dengan Efektivitas Kegiatan Penyuluhan berada pada kategori Cukup Efektif.


Author(s):  
Shweta Gupta ◽  
Rajesh Kaushal ◽  
Gaurav Sood ◽  
Bhawna Dipta ◽  
Shruti Kirti ◽  
...  

The present study was initiated with testing of fifteen previously isolated indigenous plant growth promoting rhizobacteria for drought tolerance. Among all, two best isolates Pseudomonas aeruginosa (JHA6) and Bacillus amyloliquefaciens (ROH14) were selected for in-vivo studies. A total of ten treatments comprising Plant growth promoting rhizobacteria (PGPR) (JHA6 and ROH14) inoculated plants held at 80%, 60% and 40% field capacity (FC) soil moisture level was laid down in Completely Randomized Design with three replications. Un-inoculated plants held at various stress levels and non-stressed conditions (100% FC) served as control. In general, both the bacteria could promote Capsicum growth in terms of increase in root and shoot biomass, height of plants, chlorophyll content as well as increase in nutrient content and uptake. Besides, the bacterial inoculated Capsicum plants could withstand water stress more efficiently as indicated by increases in leaf area, total soluble proteins and relative water content of treated water stressed plants in comparison to untreated stressed ones. Enhanced antioxidant responses were evident as elevated activities of enzymes such as superoxide dismutase, catalase and peroxidase was recorded. Therefore, the ability of Capsicum plants to tolerate water stress is enhanced by application of the isolated bacteria which also function as plant growth promoting rhizobacteria.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1349
Author(s):  
Isha Mishra ◽  
Tahmish Fatima ◽  
Dilfuza Egamberdieva ◽  
Naveen Kumar Arora

In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.


2020 ◽  
Vol 66 (No. 5) ◽  
pp. 234-241 ◽  
Author(s):  
Mahnoor Asif ◽  
Arshid Pervez ◽  
Usman Irshad ◽  
Qaisar Mehmood ◽  
Rafiq Ahmad

Melatonin (N-acetyl-5-methoxytryptamine) is a recently discovered natural product that helps the plant to cope with environmental stresses. In the same way, plant growth-promoting rhizobacteria colonise plant roots and enhance plant stress tolerance. To study the impact of exogenous melatonin and Bacillus licheniformis on the growth of Spinacia oleracea L. seedlings were treated with 100 µmol exogenous melatonin and B. licheniformis under cadmium (Cd) and arsenic (As) stresses by a pot experiment. Different plant growth parameters, antioxidant enzymes, and lipid peroxidation were studied. The results showed that melatonin application and B. licheniformis inoculation alleviated As and Cd toxicity by significantly reducing the negative impacts of stresses and increasing the fresh and dry weight as well as preventing the damage to the chlorophyll content of S. oleracea L. Moreover, supplementation of melatonin, and B. licheniformis, enhanced activities of antioxidant enzymes superoxide dismutase, peroxidase, catalase, thus acting as a line of defense against As and Cd stresses. Similarly, lipid peroxidation was also inhibited by exogenous melatonin and B. licheniformis inoculation. Exogenous application of melatonin and inoculating roots of S. oleracea L. with B. licheniformis found to ameliorate the harmful effects of As and Cd contamination.


2001 ◽  
Vol 120 (5) ◽  
pp. A670-A670
Author(s):  
M NERI ◽  
G DAVI ◽  
D FESTI ◽  
F LATERZA ◽  
A FALCO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document