scholarly journals Inclusion Complexes of β and HPβ-Cyclodextrin with α, β Amyrin and In Vitro Anti-Inflammatory Activity

Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 241 ◽  
Author(s):  
Walter Ferreira da Silva Júnior ◽  
Danielle Lima Bezerra de Menezes ◽  
Luana Carvalho de Oliveira ◽  
Letícia Scherer Koester ◽  
Patrícia Danielle Oliveira de Almeida ◽  
...  

α, β amyrin (ABAM) is a natural mixture of pentacyclic triterpenes that has a wide range of biological activities. ABAM is isolated from the species of the Burseraceae family, in which the species Protium is commonly found in the Amazon region of Brazil. The aim of this work was to develop inclusion complexes (ICs) of ABAM and β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) by physical mixing (PM) and kneading (KN) methods. Interactions between ABAM and the CD’s as well as the formation of ICs were confirmed by physicochemical characterization in the solid state by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Physicochemical characterization indicated the formation of ICs with both βCD and HPβCD. Such ICs were able to induce changes in the physicochemical properties of ABAM. In addition, the formation of ICs with cyclodextrins showed to be an effective and promising alternative to enhance the anti-inflammatory activity and safety of ABAM.

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


Molecules ◽  
2017 ◽  
Vol 22 (9) ◽  
pp. 1512 ◽  
Author(s):  
Walter da Silva Júnior ◽  
Jonas Pinheiro ◽  
Danielle de Menezes ◽  
Natan e Silva ◽  
Patrícia de Almeida ◽  
...  

2017 ◽  
Vol 32 (8) ◽  
pp. 1127-1138 ◽  
Author(s):  
Sina Andalib ◽  
Pezhman Molhemazar ◽  
Hossein Danafar

Statins have been shown to exert ‘pleiotropic effects’ independent of their cholesterol lowering actions that include anti-inflammatory properties. In this study we synthesized mono methoxy poly (ethylene glycol)–poly (ε-caprolactone) (mPEG-PCL) di block copolymers. The structure of the copolymers was characterized by H nuclear magnetic resonance, Fourier-transform infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography techniques. In this method, atorvastatin was encapsulated within micelles through a single-step nano-precipitation method, leading to the formation of atorvastatin-loaded mPEG-PCL (atorvastatin/mPEG-PCL) micelles. The resulting micelles were characterized further by various techniques such as dynamic light scattering and atomic force microscopy. In this study the anti-inflammatory activity of atorvastatin and atorvastatin/mPEG-PCL micelles on acute models of inflammation are analyzed, to compare the effect of indometacin in rats. Carrageenan induces rat paw edema; six animals of each group (10 groups) received indometacin, atorvastatin, and atorvastatin/mPEG-PCL micelles orally 1, 6, 12 and 24 h before carrageenan injection in paw. The paw edema thickness measured at 1, 2, 3 and 4 h after injection and percentage inhibition of edema in various groups were calculated. The results showed that the zeta potential of micelles was about −16.6 mV and the average size was 81.7 nm. Atorvastatin was encapsulated into mPEG-PCL micelles with loading capacity of 14.60 ± 0.96% and encapsulation efficiency of 62.50 ± 0.84%. Atorvastatin and atorvastatin/mPEG-PCL micelles showed significant anti-inflammatory activity in the present study. The anti-inflammatory activity of atorvastatin and atorvastatin/mPEG-PCL micelles was significant in comparison with indometacin. Atorvastatin/mPEG-PCL micelles showed more anti-inflammatory activity than atorvastatin. This study revealed the anti-inflammatory activity of atorvastatin and atorvastatin/mPEG-PCL micelles and suggested the statins have a potential inflammatory activity along with its lipid lowering properties. Contrary to anti-inflammatory effects, the pro-inflammatory responses are independent of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibition and can be mediated directly by atorvastatin.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5430
Author(s):  
Maria Elaine Araruna ◽  
Catarina Serafim ◽  
Edvaldo Alves Júnior ◽  
Clelia Hiruma-Lima ◽  
Margareth Diniz ◽  
...  

Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities. This review compiles 12 terpenes with intestinal anti-inflammatory activity evaluated in animal models and in vitro studies. The therapeutic approach to IBDs using terpenes acts basically to prevent oxidative stress, combat dysbiosis, restore intestinal permeability, and improve the inflammation process in different signaling pathways.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (08) ◽  
pp. 38-48
Author(s):  
S. V Shinde ◽  
S Nikam ◽  
P Raut ◽  
M. K. Ghag ◽  

In the present research work, celecoxib (CXB) loaded solid lipid nanoparticles (SLNs) were prepared using the probe sonication method, wherein Glyceryl monostearate and Tween 80 were used as solid lipid and surfactant, respectively. To obtain the statistically optimized batch, 32 factorial design was applied. The optimized batch was characterized physicochemically and evaluated through DSC, SEM and XRD studies. The mean particle size of the optimized batch was found to be 135.41± 0.24 nm with a mean % entrapment efficiency of 80 ± 1.69%. The optimized batch was further lyophilized and dispersed into 1% w/v Carbopol 934P to form a gel. Prepared gel was further evaluated for in vitro drug release, occlusivity, ex vivo permeability, local toxicity, in vivo anti-inflammatory activity and accelerated stability study. The study resulted in stable, safe and prolonged anti-inflammatory activity with quick onset of action. Hence, celecoxib loaded solid lipid nanoparticles can be considered as promising alternative to conventional topical systems.


2019 ◽  
Author(s):  
Hajer Tlili ◽  
Najjaa Hanen ◽  
Abdelkerim Ben Arfa ◽  
Mohamed Neffati ◽  
Abdelbasset Boubakri ◽  
...  

ABSTRACTRecently, much attention has been paid to the extracts obtained from plant species in order to analyse their biological activities. Due to the climate diversity in Tunisia, the traditional pharmacopoeia consists of a wide arsenal of medicinal plant species since long used in folk medicine, in foods as spices, and in aromatherapy. Although many of these species are nearly facing extinction, only a small proportion of them have been scientifically studied. Therefore, this study explores the biochemical properties of seven spontaneous plants, which were harvested in the arid Tunisian desert: Marrubium vulgare L., Rhus tripartita (Ucria) D.C., Thymelaea hirsute (L.) Endl., Plantago ovata Forsk., Herniaria fontanesii J. Gay., Ziziphus lotus and Hyoscyamus albus. Extracts from these plants were found to contain different types of secondary metabolites (polyphenols, flavonoids, condensed tannins, crude saponins, carotenoids and alkaloids) that are involved in important biological activities. The biological activity of the extracts obtained from each Tunisian plant was assessed: first of all, leukaemia and colon cancer cell lines (K-562 and CaCo-2 respectively) were treated with different concentrations of extracts, and then the anti-proliferative activity was observed. The results showed, in particular, how the plant extract from Rhus tripartita significantly inhibits cell proliferation, especially on the K-562 tumour cell line. Subsequently, the anti-inflammatory activity was also assessed, and the results showed that Herniaria fontanesii and Marrubium vulgare possess the highest activity in the group of analysed plants. Finally, the greatest acetylcholinesterase inhibitory effect was exhibited by the extract obtained from Rhus tripartita.In conclusion, all the Tunisian plants we analysed were shown to contain a remarkable amount of different bio-active compounds, thus confirming their involvement in several biological activities. Rhus tripartita and Ziziphus lotus were shown to be particularly effective in anti-proliferative activity, while Herniaria fontanesii were shown to have the best anti-inflammatory activity.


2020 ◽  
Author(s):  
Xiaoxuan Lin ◽  
Sipeng Chen ◽  
Jingjing Quan ◽  
Qi Zhang ◽  
Muzi Liao ◽  
...  

Abstract Bone defect diseases, particularly induced by inflammation, render a challenge for designing ideal drug-loading scaffold that could facilitate bone repairing and eliminate inflammatory pathogens. LL37 is considered as promising alternative loading drug due to its broad-spectrum antimicrobial effect and various bio-functions including osteogenic induction. In this study, we synthesized modified LL37 by adding collagen binding domain (CBD), which aim to provide a specific binding onto collagen and slow-releasing pattern. The modified peptide was proved to exhibit similar biological activities to nature LL37 on rat BMSCs including promoting migration activity, anti-inflammatory activity and osteogenic induction in vitro. Ectopic bone formation experiment further confirmed the angiogenesis and osteoinduction activities in vivo. Collectively, LL37-CBD may be a potential loaded drug for preventative and curative applications in Inflammation-induced bone diseases, exerting dual strategies including anti-inflammatory and osteogenic effects.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4411 ◽  
Author(s):  
Olympia Kouzi ◽  
Eleni Pontiki ◽  
Dimitra Hadjipavlou-Litina

Indandiones are a relatively new group of compounds presenting a wide range of biological activities. The synthesis of these compounds was performed via a Knoevenagel reaction between an aldehyde and 1,3-indandione and were obtained with a yield up to 54%. IR, 1H-Nucleic Magnetic Resonance (NMR), 13C-NMR, LC/MS ESI+ and elemental analysis were used for the confirmation of the structures of the novel derivatives. Lipophilicity values of compounds were calculated theoretically and experimentally by reversed chromatography method as values RM. The novel derivatives were studied through in vitro and in vivo experiments for their activity as anti-inflammatory and antioxidant agents and as inhibitors of lipoxygenase, trypsin, and thrombin. The inhibition of the carrageenin-induced paw edema (CPE) was also determined for representative structures. In the above series of experiments, we find that all the compounds showed moderate to satisfying interaction with the stable DPPH free radical in relation to the concentration and the time 2-arylidene-1-indandione (10) was the strongest. We observed moderate or very low antioxidant activities for selected compounds in the decolorization assay with ABTS+•. Most of the compounds showed high anti-lipid peroxidation of linoleic acid induced by AAPH.2-arylidene-1-indandione (7) showed a strongly inhibited soybean LOX. Only 2-arylidene-1-indandione (3) showed moderate scavenging activity of superoxide anion, whereas 2-arylidene-1-indandione (8) and 2-arylidene-1-indandione (9) showed very strong inhibition on proteolysis. 2-arylidene-1-indandione (8) highly inhibited serine protease thrombin. 2-arylidene-1-indandiones (7, 8 and 9) can be used as lead multifunctional molecules. The compounds were active for the inhibition of the CPE (30–57%) with 2-arylidene-1-indandione (1) being the most potent (57%). According to the predicted results a great number of the derivatives can cross the Blood–Brain Barrier (BBB), act in CNS and easily transported, diffused, and absorbed. Efforts are conducted a) to correlate quantitatively the in vitro/in vivo results with the most important physicochemical properties of the structural components of the molecules and b) to clarify the correlation of actions among them to propose a possible mechanism of action. Hydration energy as EHYDR and highest occupied molecular orbital (HOMO) better describe their antioxidant profile whereas the lipophilicity as RM values governs the in vivo anti-inflammatory activity. Docking studies are performed and showed that soybean LOX oxidation was prevented by blocking into the hydrophobic domain the substrates to the active site.


2018 ◽  
Vol 10 (6) ◽  
pp. 268
Author(s):  
Yogesh Pore ◽  
Madhuri Mane ◽  
Vaishnavi Mangrule ◽  
Atul Chopade ◽  
Pankaj Gajare

Objective: The objective of this study was to prepare and characterize etoricoxib (ECB) loaded Soluplus® nanocomposites to improve its physicochemical properties. The effect of polymer and surfactant concentration on particle size, in vitro percentage dissolution efficiency and the anti-inflammatory activity of nanocomposites were also investigated.Methods: The nanocomposites were prepared by using a freeze-drying technique. The analytical evidence for the formulation of lyophilized nanocomposites in solid state were generated and confirmed by differential scanning calorimetry (DSC), fourier transformation infrared spectroscopy (FTIR), x-ray powder diffractometry (XPRD) and scanning electron microscopy (SEM). The in vitro drug release profile of nanocomposites was compared with pure ECB powder.Results: The nanocomposites of ECB were contained in a nano range with particle size and zeta potential of 63.5 nm and 46.5 mv, respectively. The solubility and dissolution of the nanocomposites were significantly (p<0.001) improved as compared to ECB alone, evidenced by decreased log P values (1.90±0.002) of the nanocomposites. The characterization studies revealed the formation of amorphous nanocomposites of ECB with existence of physical interactions between drug and polymer. The anti-inflammatory activity of nanocomposites evaluated by carrageenan-induced rat paw edema model demonstrated nonsignificant (p>0.05) increase in anti-inflammatory activity as compared to pure ECB.Conclusion: From the results, it could be concluded that the formation of ECB nanocomposites with Soluplus® could be an effective and alternative approach to modify the physicochemical properties of ECB.


Sign in / Sign up

Export Citation Format

Share Document