scholarly journals CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges

Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 105 ◽  
Author(s):  
Marta Martinez-Lage ◽  
Pilar Puig-Serra ◽  
Pablo Menendez ◽  
Raul Torres-Ruiz ◽  
Sandra Rodriguez-Perales

Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has recently emerged as a potentially powerful tool in the arsenal of cancer therapy. Among its many applications, CRISPR-Cas9 has shown an unprecedented clinical potential to discover novel targets for cancer therapy and to dissect chemical-genetic interactions, providing insight into how tumours respond to drug treatment. Moreover, CRISPR-Cas9 can be employed to rapidly engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Perhaps more importantly, the ability of CRISPR-Cas9 to accurately edit genes, not only in cell culture models and model organisms but also in humans, allows its use in therapeutic explorations. In this review, we discuss important considerations for the use of CRISPR/Cas9 in therapeutic settings and major challenges that will need to be addressed prior to its clinical translation for a complex and polygenic disease such as cancer.

2020 ◽  
Vol 27 (10) ◽  
pp. 931-944 ◽  
Author(s):  
Fatima Akram ◽  
Ikram ul Haq ◽  
Zeeshan Ahmed ◽  
Hamza Khan ◽  
Muhammad Shrafat Ali

Cancer is one of the most leading causes of mortality all over the world and remains a foremost social and economic burden. Mutations in the genome of individuals are taking place more frequently due to the excessive progress of xenobiotics and industrialization in the present world. With the progress in the field of molecular biology, it is possible to alter the genome and to observe the functional changes derived from genetic modulation using gene-editing technologies. Several therapies have been applied for the treatment of malignancy which affect the normal body cells; however, more effort is required to develop vsome latest therapeutic approaches for cancer biology and oncology exploiting these molecular biology advances. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) system has emerged as a powerful technology for cancer therapy because of its great accuracy and efficiency. Genome editing technologies have demonstrated a plethora of benefits to the biological sciences. CRISPR- Cas9, a versatile gene editing tool, has become a robust strategy for making alterations to the genome of organisms and a potent weapon in the arsenal of tumor treatment. It has revealed an excellent clinical potential for cancer therapy by discovering novel targets and has provided the researchers with the perception about how tumors respond to drug therapy. Stern efforts are in progress to enhance its efficiency of sequence specific targeting and consequently repressing offtarget effects. CRISPR-Cas9 uses specific proteins to convalesce mutations at genetic level. In CRISPR-Cas9 system, RNA-guided Cas9 endonuclease harnesses gene mutation, DNA deletion or insertion, transcriptional activation or repression, multiplex targeting only by manipulating 20-nucleotide components of RNA. Originally, CRISPR-Cas9 system was used by bacteria for their defense against different bacteriophages, and recently this system is receiving noteworthy appreciation due to its emerging role in the treatment of genetic disorders and carcinogenesis. CRISPR-Cas9 can be employed to promptly engineer oncolytic viruses and immune cells for cancer therapeutic applications. More notably, it has the ability to precisely edit genes not only in model organisms but also in human being that permits its use in therapeutic analysis. It also plays a significant role in the development of complete genomic libraries for cancer patients. In this review, we have highlighted the involvement of CRISPR-Cas9 system in cancer therapy accompanied by its prospective applications in various types of malignancy and cancer biology. In addition, some other conspicuous functions of this unique system have also been discussed beyond genome editing.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 685 ◽  
Author(s):  
Cormac McCarthy ◽  
Nadishka Jayawardena ◽  
Laura N. Burga ◽  
Mihnea Bostina

Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.


2015 ◽  
Vol 1 ◽  
pp. e33 ◽  
Author(s):  
Elisha D. Roberson

CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3′GG motif, which substantially increases the efficiency of editing at all sites tested inC. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a Python command-line tool, ngg2, to identify 3′GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes:Saccharomyces cerevisiae,Caenorhabditis elegans,Drosophila melanogaster,Danio rerio,Mus musculus, andHomo sapiens. I also scanned the genomes of pig (Sus scrofa) and African elephant (Loxodonta africana) to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3′GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3′GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3′GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3′GG editing sites in any species with an available genome sequence.


2019 ◽  
Author(s):  
Remi L. Gratacap ◽  
Tim Regan ◽  
Carola E. Dehler ◽  
Samuel A.M. Martin ◽  
Pierre Boudinot ◽  
...  

1AbstractGenome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. In the current study, an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214) was developed. As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


2019 ◽  
Vol 15 ◽  
pp. 234-247 ◽  
Author(s):  
Meijun Zheng ◽  
Jianhan Huang ◽  
Aiping Tong ◽  
Hui Yang

RSC Advances ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 2646-2649 ◽  
Author(s):  
Lamiaa M. A. Ali ◽  
Emna Mathlouthi ◽  
Maëlle Cahu ◽  
Saad Sene ◽  
Morgane Daurat ◽  
...  

Mn2+-doped Prussian blue nanoparticles loaded with doxorubicin present high efficiency for combined photothermal and chemotherapy of cancer cells with a synergic effect under two-photon irradiation.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yu Hisano ◽  
Tetsushi Sakuma ◽  
Shota Nakade ◽  
Rie Ohga ◽  
Satoshi Ota ◽  
...  

Abstract The CRISPR/Cas9 system provides a powerful tool for genome editing in various model organisms, including zebrafish. The establishment of targeted gene-disrupted zebrafish (knockouts) is readily achieved by CRISPR/Cas9-mediated genome modification. Recently, exogenous DNA integration into the zebrafish genome via homology-independent DNA repair was reported, but this integration contained various mutations at the junctions of genomic and integrated DNA. Thus, precise genome modification into targeted genomic loci remains to be achieved. Here, we describe efficient, precise CRISPR/Cas9-mediated integration using a donor vector harbouring short homologous sequences (10–40 bp) flanking the genomic target locus. We succeeded in integrating with high efficiency an exogenous mCherry or eGFP gene into targeted genes (tyrosinase and krtt1c19e) in frame. We found the precise in-frame integration of exogenous DNA without backbone vector sequences when Cas9 cleavage sites were introduced at both sides of the left homology arm, the eGFP sequence and the right homology arm. Furthermore, we confirmed that this precise genome modification was heritable. This simple method enables precise targeted gene knock-in in zebrafish.


2009 ◽  
Vol 17 (10) ◽  
pp. 1667-1676 ◽  
Author(s):  
Candice Willmon ◽  
Kevin Harrington ◽  
Timothy Kottke ◽  
Robin Prestwich ◽  
Alan Melcher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document