scholarly journals Novel Bradykinin-Potentiating Peptides and Three-Finger Toxins from Viper Venom: Combined NGS Venom Gland Transcriptomics and Quantitative Venom Proteomics of the Azemiops feae Viper

Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 249
Author(s):  
Vladislav V. Babenko ◽  
Rustam H. Ziganshin ◽  
Christoph Weise ◽  
Igor Dyachenko ◽  
Elvira Shaykhutdinova ◽  
...  

Feae’s viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 453
Author(s):  
Sebastian Estrada-Gómez ◽  
Leidy Johana Vargas-Muñoz ◽  
Cesar Segura Latorre ◽  
Monica Maria Saldarriaga-Cordoba ◽  
Claudia Marcela Arenas-Gómez

Nowadays, spider venom research focuses on the neurotoxic activity of small peptides. In this study, we investigated high-molecular-mass compounds that have either enzymatic activity or housekeeping functions present in either the venom gland or venom of Pamphobeteus verdolaga. We used proteomic and transcriptomic-assisted approaches to recognize the proteins sequences related to high-molecular-mass compounds present in either venom gland or venom. We report the amino acid sequences (partial or complete) of 45 high-molecular-mass compounds detected by transcriptomics showing similarity to other proteins with either enzymatic activity (i.e., phospholipases A2, kunitz-type, hyaluronidases, and sphingomyelinase D) or housekeeping functions involved in the signaling process, glucanotransferase function, and beta-N-acetylglucosaminidase activity. MS/MS analysis showed fragments exhibiting a resemblance similarity with different sequences detected by transcriptomics corresponding to sphingomyelinase D, hyaluronidase, lycotoxins, cysteine-rich secretory proteins, and kunitz-type serine protease inhibitors, among others. Additionally, we report a probably new protein sequence corresponding to the lycotoxin family detected by transcriptomics. The phylogeny analysis suggested that P. verdolaga includes a basal protein that underwent a duplication event that gave origin to the lycotoxin proteins reported for Lycosa sp. This approach allows proposing an evolutionary relationship of high-molecular-mass proteins among P. verdolaga and other spider species.


2018 ◽  
Vol 51 (1) ◽  
pp. 1701385 ◽  
Author(s):  
Neeloffer Mookherjee ◽  
Hadeesha Piyadasa ◽  
Min Hyung Ryu ◽  
Christopher Francis Rider ◽  
Peyman Ezzati ◽  
...  

Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g.the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex humanin vivomodels in detailing airway responses to inhaled pollution.


PROTEOMICS ◽  
2016 ◽  
Vol 16 (24) ◽  
pp. 3161-3172 ◽  
Author(s):  
Jan Arends ◽  
Nikolas Thomanek ◽  
Katja Kuhlmann ◽  
Katrin Marcus ◽  
Franz Narberhaus

2015 ◽  
Vol 14 (10) ◽  
pp. 2550-2563 ◽  
Author(s):  
Bastian Dislich ◽  
Felix Wohlrab ◽  
Teresa Bachhuber ◽  
Stephan A. Müller ◽  
Peer-Hendrik Kuhn ◽  
...  

2011 ◽  
Vol 38 (6) ◽  
pp. 506-518 ◽  
Author(s):  
Wei ZHANG ◽  
Ji-Yang ZHANG ◽  
Hui LIU ◽  
Han-Chang SUN ◽  
Chang-Ming XU ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated proteins, which protect them from DNA damage and regulate telomere length homeostasis. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to identify TEBP-1 and TEBP-2, two paralogs expressed in the germline and embryogenesis that associate to telomeres in vitro and in vivo. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a Mortal Germline. Notably, tebp-1;tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. Furthermore, we show that POT-1 forms a telomeric complex with TEBP-1 and TEBP-2, which bridges TEBP-1/-2 with POT-2/MRT-1. These results provide insights into the composition and organization of a telomeric protein complex in C. elegans.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Alaa Hseiky ◽  
Marion Crespo ◽  
Sylvie Kieffer-Jaquinod ◽  
François Fenaille ◽  
Delphine Pflieger

(1) Background: The proteomic analysis of histones constitutes a delicate task due to the combination of two factors: slight variations in the amino acid sequences of variants and the multiplicity of post-translational modifications (PTMs), particularly those occurring on lysine residues. (2) Methods: To dissect the relationship between both aspects, we carefully evaluated PTM identification on lysine 27 from histone H3 (H3K27) and the artefactual chemical modifications that may lead to erroneous PTM determination. H3K27 is a particularly interesting example because it can bear a range of PTMs and it sits nearby residues 29 and 31 that vary between H3 sequence variants. We discuss how the retention times, neutral losses and immonium/diagnostic ions observed in the MS/MS spectra of peptides bearing modified lysines detectable in the low-mass region might help validate the identification of modified sequences. (3) Results: Diagnostic ions carry key information, thereby avoiding potential mis-identifications due to either isobaric PTM combinations or isobaric amino acid-PTM combinations. This also includes cases where chemical formylation or acetylation of peptide N-termini artefactually occurs during sample processing or simply in the timeframe of LC-MS/MS analysis. Finally, in the very subtle case of positional isomers possibly corresponding to a given mass of lysine modification, the immonium and diagnostic ions may allow the identification of the in vivo structure.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jun Zhu ◽  
Hercules Rezende Freitas ◽  
Izumi Maezawa ◽  
Lee-way Jin ◽  
Vivek J. Srinivasan

AbstractIn vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utilizes the water absorption window around 1700 nm, where ballistic attenuation in the brain is minimized. Key issues, including detector noise, excess light source noise, chromatic dispersion, and the resolution-speckle tradeoff, are analyzed and optimized. Imaging through a thinned-skull preparation that preserves intracranial space, we present volumetric imaging of cytoarchitecture and myeloarchitecture across the entire depth of the mouse neocortex, and some sub-cortical regions. In an Alzheimer’s disease model, we report that findings in superficial and deep cortical layers diverge, highlighting the importance of deep optical biopsy. Compared to other microscopic techniques, our 1700 nm OCM approach achieves a unique combination of intrinsic contrast, minimal invasiveness, and high resolution for deep brain imaging.


Sign in / Sign up

Export Citation Format

Share Document