scholarly journals Kisspeptin-8 Induces Anxiety-Like Behavior and Hypolocomotion by Activating the HPA Axis and Increasing GABA Release in the Nucleus Accumbens in Rats

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 112
Author(s):  
Katalin Eszter Ibos ◽  
Éva Bodnár ◽  
Zsolt Bagosi ◽  
Zsolt Bozsó ◽  
Gábor Tóth ◽  
...  

Kisspeptins (Kp) are RF-amide neuropeptide regulators of the reproductive axis that also influence anxiety, locomotion, and metabolism. We aimed to investigate the effects of intracerebroventricular Kp-8 (an N-terminally truncated octapeptide) treatment in Wistar rats. Elevated plus maze (EPM), computerized open field (OF), and marble burying (MB) tests were performed for the assessment of behavior. Serum LH and corticosterone levels were determined to assess kisspeptin1 receptor (Kiss1r) activation and hypothalamic-pituitary-adrenal axis (HPA) stimulation, respectively. GABA release from the nucleus accumbens (NAc) and dopamine release from the ventral tegmental area (VTA) and NAc were measured via ex vivo superfusion. Kp-8 decreased open arm time and entries in EPM, and also raised corticosterone concentration, pointing to an anxiogenic effect. Moreover, the decrease in arm entries in EPM, the delayed increase in immobility accompanied by reduced ambulatory activity in OF, and the reduction in interactions with marbles show that Kp-8 suppressed exploratory and spontaneous locomotion. The increase in GABA release from the NAc might be in the background of hypolocomotion by inhibiting the VTA-NAc dopaminergic circuitry. As Kp-8 raised LH concentration, it could activate Kiss1r and stimulate the reproductive axis. As Kiss1r is associated with hyperlocomotion, it is more likely that neuropeptide FF receptor activation is involved in the suppression of locomotor activity.

2003 ◽  
Vol 89 (5) ◽  
pp. 2389-2395 ◽  
Author(s):  
Gregory O. Hjelmstad ◽  
Howard L. Fields

Through their actions in the nucleus accumbens (NAc), kappa opioid (KOP) receptors and their endogenous ligand, dynorphin, modify behaviors associated with the administration of drugs of abuse and are regulated by exposure to such drugs. Despite their demonstrated behavioral significance, the synaptic actions of KOP receptor ligands in the NAc are not clearly understood. Using whole-cell voltage-clamp recordings of NAc medium spiny neurons, we have found that, in addition to suppressing glutamate release, the KOP receptor agonist U69593 also inhibits GABA release. Interestingly, the mechanism of inhibition of the release of glutamate differs from that controlling GABA. U69593 reduces the frequency of Ca2+-independent miniature excitatory postsynaptic currents, but not miniature inhibitory postsynaptic currents. Furthermore, while the U69593 inhibition of GABAergic transmission is blocked by the N-type Ca2+channel blocker ω-CgTx, the inhibition of excitatory glutamatergic transmission by U69593 is unaffected by N-type Ca2+ channel blockade. These results indicate that KOP receptor activation inhibits GABA release by reducing Ca2+ influx, but inhibits glutamate release at a step downstream of Ca2+entry.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Romuald Brice Babou Kammoe ◽  
Gilles Kauffenstein ◽  
Julie Pelletier ◽  
Bernard Robaye ◽  
Jean Sévigny

Nucleotides released by smooth muscle cells (SMCs) and by innervating nerve terminals activate specific P2 receptors and modulate bladder contraction. We hypothesized that cell surface enzymes regulate SMC contraction in mice bladder by controlling the concentration of nucleotides. We showed by immunohistochemistry, enzymatic histochemistry, and biochemical activities that nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) and ecto-5′-nucleotidase were the major ectonucleotidases expressed by SMCs in the bladder. RT-qPCR revealed that, among the nucleotide receptors, there was higher expression of P2X1, P2Y1, and P2Y6 receptors. Ex vivo, nucleotides induced a more potent contraction of bladder strips isolated from NTPDase1 deficient (Entpd1−/−) mice compared to wild type controls. The strongest responses were obtained with uridine 5′-triphosphate (UTP) and uridine 5′-diphosphate (UDP), suggesting the involvement of P2Y6 receptors, which was confirmed with P2ry6−/− bladder strips. Interestingly, this response was reduced in female bladders. Our results also suggest the participation of P2X1, P2Y2 and/or P2Y4, and P2Y12 in these contractions. A reduced response to the thromboxane analogue U46619 was also observed in wild type, Entpd1−/−, and P2ry6−/− female bladders showing another difference due to sex. In summary, NTPDase1 modulates the activation of nucleotide receptors in mouse bladder SMCs, and contractions induced by P2Y6 receptor activation were weaker in female bladders.


Author(s):  
Zhanglei Dong ◽  
Bingwu Huang ◽  
Chenchen Jiang ◽  
Jiangfan Chen ◽  
Han Lin ◽  
...  

AbstractPropofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5–10.0 ng/site), MSX-3 (A2AR antagonist, 5.0–20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75–3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75–3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0–20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.


2016 ◽  
Vol 106 ◽  
pp. 91-101 ◽  
Author(s):  
Guillermo Aquino-Miranda ◽  
Juan Escamilla-Sánchez ◽  
Raúl González-Pantoja ◽  
Antonio Bueno-Nava ◽  
José-Antonio Arias-Montaño

Synapse ◽  
2014 ◽  
Vol 69 (2) ◽  
pp. 78-85 ◽  
Author(s):  
James M. Kasper ◽  
Raymond G. Booth ◽  
Joanna Peris

2000 ◽  
Vol 20 (24) ◽  
pp. 9333-9340 ◽  
Author(s):  
Alexis C. Thompson ◽  
Agustin Zapata ◽  
Joseph B. Justice ◽  
Roxanne A. Vaughan ◽  
Lawrence G. Sharpe ◽  
...  

1993 ◽  
Vol 69 (2) ◽  
pp. 626-629 ◽  
Author(s):  
J. C. Behrends ◽  
G. ten Bruggencate

1. The effect of cholinergic receptor activation on gamma-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission was investigated in voltage-clamped CA1 pyramidal neurons (HPNs) in the guinea pig hippocampal slice preparation. 2. The cholinergic agonist carbachol (1-10 microM) induced a prominent and sustained increase in the frequency and amplitudes of spontaneous inhibitory postsynaptic currents (IPSCs) in Cl(-)-loaded HPNs. The potentiation of spontaneous IPSCs was not dependent on excitatory synaptic transmission but was blocked by atropine (1 microM). 3. Monosynaptically evoked IPSCs were reversibly depressed by carbachol (10 microM). 4. The frequency of miniature IPSCs recorded in the presence of tetrodotoxin (0.6 or 1.2 microM) was reduced by carbachol (10 or 20 microM) in an atropine-sensitive manner. 5. We conclude that, while cholinergic receptor activation directly excites hippocampal GABAergic interneurons, it has, in addition, a suppressant effect on the synaptic release mechanism at GABAergic terminals. This dual modulatory pattern could explain the suppression of evoked IPSCs despite enhanced spontaneous transmission.


Sign in / Sign up

Export Citation Format

Share Document