scholarly journals Study of the Dielectric Properties of Artificial Sweat Mixtures at Microwave Frequencies

Biosensors ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 62 ◽  
Author(s):  
Angie R. Eldamak ◽  
Sarah Thorson ◽  
Elise C. Fear

Analysis of sweat is of interest for a variety of diagnosis and monitoring applications in healthcare. In this work, detailed measurements of the dielectric properties of solutions representing the major components of sweat are presented. The measurements include aqueous solutions of sodium chloride (NaCl), potassium chloride (KCl), urea, and lactic acid, as well as their mixtures. Moreover, mixtures of NaCl, KCl, urea, and lactic acid, mimicking artificial sweat at different hydration states, are characterized, and the data are fitted to a Cole–Cole model. The complex dielectric permittivity for all prepared solutions and mixtures is studied in the range of 1–20 GHz, at temperature of 23 °C, with ionic concentrations in the range of 0.01–1.7 mol/L.

1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


2020 ◽  
Vol 80 (2) ◽  
pp. 285-289
Author(s):  
R. Stefanello ◽  
B. B. Viana ◽  
P. C. H. Goergen ◽  
L. A. S. Neves ◽  
U. R. Nunes

Abstract Salinity, of both soil and water, is one of the main causes of crop yield decline. Within this context, the objective of this study was to evaluate the influence of different salts on the germination of chia seeds. The experiment was conducted in a BOD chamber at a constant temperature of 20 °C and in the presence of light. The seeds were placed on paper soaked with aqueous solutions of calcium chloride (CaCl2), sodium chloride (NaCl), potassium chloride (KCl), and magnesium chloride (MgCl2), at the osmotic potentials zero, -0.10, -0.20, -0.30, and -0.40 MPa. The effect of the salinity was evaluated using a germination test, with counts on days 7 and 14 after sowing. Based on the results, chia seeds tolerate concentrations of NaCl to -0.4 MPa and KCl to -0.20 MPa. The salts CaCl2 and MgCl2 had a negative effect on the germination and vigor of the chia seeds for the osmotic potentials -0.30 MPa and -0.20 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document