scholarly journals Detection of Breast Cancer Cells Using Acoustics Aptasensor Specific to HER2 Receptors

Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 72 ◽  
Author(s):  
Alexandra Poturnayová ◽  
Ľudmila Dzubinová ◽  
Monika Buríková ◽  
Jozef Bízik ◽  
Tibor Hianik

Detection of the breast cancer cells is important for early diagnosis of the cancer. We applied thickness shear mode acoustics method (TSM) for detection of SK-BR-3 breast cancer cells using DNA aptamers specific to HER2 positive membrane receptors. The biotinylated aptamers were immobilized at the neutravidin layer chemisorbed at gold surface of TSM transducer. Addition of the cells resulted in decrease of resonant frequency, fs, and in increase of motional resistance, Rm. Using gold nanoparticles (AuNPs), modified by aptamers it was possible improving the limit of detection (LOD) that reached 550 cells/mL, while without amplification the sensitivity of the detection of SK-BR-3 cells was 1574 cells/mL. HER2 negative cell line MDA-MB-231 did not resulted in significant changes of fs. The viability studies demonstrated that cells are stable at experimental conditions used during at least 8 h. AuNPs were not toxic on the cells up to concentration of 1 μg/mL.

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1132
Author(s):  
Javier A. Menendez ◽  
Adriana Papadimitropoulou ◽  
Travis Vander Steen ◽  
Elisabet Cuyàs ◽  
Bharvi P. Oza-Gajera ◽  
...  

The identification of clinically important molecular mechanisms driving endocrine resistance is a priority in estrogen receptor-positive (ER+) breast cancer. Although both genomic and non-genomic cross-talk between the ER and growth factor receptors such as human epidermal growth factor receptor 2 (HER2) has frequently been associated with both experimental and clinical endocrine therapy resistance, combined targeting of ER and HER2 has failed to improve overall survival in endocrine non-responsive disease. Herein, we questioned the role of fatty acid synthase (FASN), a lipogenic enzyme linked to HER2-driven breast cancer aggressiveness, in the development and maintenance of hormone-independent growth and resistance to anti-estrogens in ER/HER2-positive (ER+/HER2+) breast cancer. The stimulatory effects of estradiol on FASN gene promoter activity and protein expression were blunted by anti-estrogens in endocrine-responsive breast cancer cells. Conversely, an AKT/MAPK-related constitutive hyperactivation of FASN gene promoter activity was unaltered in response to estradiol in non-endocrine responsive ER+/HER2+ breast cancer cells, and could be further enhanced by tamoxifen. Pharmacological blockade with structurally and mechanistically unrelated FASN inhibitors fully impeded the strong stimulatory activity of tamoxifen on the soft-agar colony forming capacity—an in vitro metric of tumorigenicity—of ER+/HER2+ breast cancer cells. In vivo treatment with a FASN inhibitor completely prevented the agonistic tumor-promoting activity of tamoxifen and fully restored its estrogen antagonist properties against ER/HER2-positive xenograft tumors in mice. Functional cancer proteomic data from The Cancer Proteome Atlas (TCPA) revealed that the ER+/HER2+ subtype was the highest FASN protein expressor compared to basal-like, HER2-enriched, and ER+/HER2-negative breast cancer groups. FASN is a biological determinant of HER2-driven endocrine resistance in ER+ breast cancer. Next-generation, clinical-grade FASN inhibitors may be therapeutically relevant to countering resistance to tamoxifen in FASN-overexpressing ER+/HER2+ breast carcinomas.


2021 ◽  
Vol 10 (1) ◽  
pp. 744-753
Author(s):  
Zahra Rahimzadeh ◽  
Seyed Morteza Naghib ◽  
Esfandyar Askari ◽  
Fatemeh Molaabasi ◽  
Ali Sadr ◽  
...  

Abstract In this paper, we use a simple and cheap approach for the synthesis of herceptin-conjugated graphene biosensor to detect the HER2-positive breast cancer cells. The bifunctional graphene-herceptin nanosheets are prepared from graphite by a simple ultrasonic-mediated technique. The prepared protein-mediated graphene is fully characterized. The results show the exfoliation of graphene layers in herceptin solution. Moreover, herceptin is effectively conjugated into the surface of graphene nanosheets. The synthesized herceptin-conjugated graphene is applied for breast cancer detection. The linear range of this biosensor is 1–80 cells, which is significant. The biosensor shows an excellent selectivity performance for detection of HER2-positive cancer cells. Likewise, the stability and functionality of the biosensor is about 40 days. Based on the results, this device is a promising candidate for rapid and selective detection of cancer cells.


Author(s):  
Jun Hua ◽  
Zhe Zhang ◽  
Lili Zhang ◽  
Yan Sun ◽  
Yuan Yuan

Abstract Purpose This study aimed to investigate the possibility of UCP-2 inhibitor in reducing acquired resistance of trastuzumab to improve the outcome of patients receiving trastuzumab therapy by exploring the relationship between UCP-2 expression and HER2 signaling pathway and examining whether UCP-2 expression was modulated by trastuzumab treatment. Methods 32 women diagnosed with primary HER2-positive breast cancer were recruited in this study. Needle biopsy was obtained from patients before they received at least four cycles neoadjuvant therapy containing trastuzumab in combination with chemotherapy. Surgical tumor biopsy was obtained during surgical procedure after the neoadjuvant therapy. Levels of HER2 phosphorylation and UCP-2 expression were detected by immunohistochemistry (IHC) and compared between tumor needle biopsy tissue and surgical tumor samples of these patients, as well as in BT474 breast cancer cells before and after trastuzumab treatment. HER2-selective phosphorylation/kinase activity inhibitor ONT-380 was used to identify the correlation between HER2 phosphorylation level and UCP-2 expression. UCP-2 inhibitor Genipin was then used to evaluate the apoptosis index in BT474 cells treated with trastuzumab. Results UCP-2 expression was significantly elevated in surgical tumor samples from breast cancer patients receiving trastuzumab in a neoadjuvant setting. We further confirmed our findings in HER2-positive BT474 cell line and found that trastuzumab treatment induced phosphorylation of HER2 and the overexpression of UCP-2, and the latter can be reversed by HER2 selective kinase inhibitor ONT-380. Moreover, UCP-2 inhibitor Genipin significantly enhanced the proliferation suppression effects of trastuzumab and markedly promoted apoptosis. Conclusion Taken together, our study identified UCP-2 as a novel therapeutic target for HER2 positive breast cancer and UCP-2 inhibitor may have great potential to enhance the response rate and efficacy of trastuzumab therapy.


2017 ◽  
Vol 50 (6) ◽  
pp. 2221-2228 ◽  
Author(s):  
Martina S.J. Mcdermott ◽  
Alexandra Canonici ◽  
Laura Ivers ◽  
Brigid C. Browne ◽  
Stephen F. Madden ◽  
...  

2018 ◽  
Vol 19 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Peng Liu ◽  
Hailin Tang ◽  
Jiali Wu ◽  
Xingsheng Qiu ◽  
Yanan Kong ◽  
...  

Background: Long non-coding RNAs play crucial roles in various biological activities and diseases. The role of long intergenic non-coding RNA01638 (linc01638) in breast cancer, especially in HER2-positive breast cancer, remains largely unknown. Objective: To investigate the effect of linc01638 on tumorigenesis in HER2-positive breast cancer. </P><P> Methods: We first used qRT-PCR to detect linc01638 expression in HER2-positive breast cancer cells and tissues. Then we analyzed the effects of linc01638 expression in HER2-positive breast cancer cells through cell apoptosis assay, cell proliferation assay, colony formation assay, and cell invasion assay. We conducted mouse xenograft model to further confirm the role of linc01638 in HER2-positive breast cancer. Moreover, we used Western blot and IHC analysis to access the effect of linc01638 on DNMTs, BRCA1 and PTEN expressions in transplanted tumors. Results: Linc01638 was found to be remarkably overexpressed in HER2-positive breast cancer cells and tissues. Suppression of linc01638 enhanced cell apoptosis, as well as inhibited the growth and invasiveness of HER2-positive breast cancer cells in vitro and tumor progression and metastasis in vivo. Furthermore, inhibition of linc01638 by shRNA attenuated expression of DNMT1, DNMT3a, and DNMT3b, and promoted expression of BRCA1 and PTEN in HER2-positive breast cancer cells and mouse xenograft models. Linc01638 might be a promising biomarker and therapeutic target for treatment of HER2-positive breast cancer.


2021 ◽  
Vol 22 (20) ◽  
pp. 11273
Author(s):  
Natalia Magdalena Lisiak ◽  
Izabela Lewicka ◽  
Mariusz Kaczmarek ◽  
Jacek Kujawski ◽  
Barbara Bednarczyk-Cwynar ◽  
...  

Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Yan ◽  
Xiao Cheng ◽  
Lin Li ◽  
Rumeng Zhang ◽  
Yong Zhu ◽  
...  

Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257298
Author(s):  
Joohyun Woo ◽  
Jong Bin Kim ◽  
Taeeun Cho ◽  
Eun Hye Yoo ◽  
Byung-In Moon ◽  
...  

The response rate to treatment with trastuzumab (Tz), a recombinant humanized anti-HER2 monoclonal antibody, is only 12–34% despite demonstrated effectiveness on improving the survival of patients with HER2-positive breast cancers. Selenium has an antitumor effect against cancer cells and can play a cytoprotective role on normal cells. This study investigated the effect of selenium on HER2-positive breast cancer cells and the mechanism in relation to the response of the cells to Tz. HER2-positive breast cancer cell lines, SK-BR-3 as trastuzumab-sensitive cells, and JIMT-1 as Tz-resistant cells were treated with Tz and sodium selenite (selenite). Cell survival rates and expression of Her2, Akt, and autophagy-related proteins, including LC3B and beclin 1, in both cell lines 72 h after treatment were evaluated. Significant cell death was induced at different concentrations of selenite in both cell lines. A combined effect of selenite and Tz at 72 h was similar to or significantly greater than each drug alone. The expression of phosphorylated Akt (p-Akt) was decreased in JIMT-1 after combination treatment compared to that after only Tz treatment, while p-Akt expression was increased in SK-BR-3. The expression of beclin1 increased particularly in JIMT-1 after only Tz treatment and was downregulated by combination treatment. These results showed that combination of Tz and selenite had an antitumor effect in Tz-resistant breast cancer cells through downregulation of phosphorylated Akt and beclin1-related autophagy. Selenite might be a potent drug to treat Tz-resistant breast cancer by several mechanisms.


Sign in / Sign up

Export Citation Format

Share Document