scholarly journals New Approaches Based on Non-Invasive Brain Stimulation and Mental Representation Techniques Targeting Pain in Parkinson’s Disease Patients: Two Study Protocols for Two Randomized Controlled Trials

2021 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Yeray González-Zamorano ◽  
Josué Fernández-Carnero ◽  
Francisco José Sánchez-Cuesta ◽  
Aida Arroyo-Ferrer ◽  
Athanasios Vourvopoulos ◽  
...  

Pain is an under-reported but prevalent symptom in Parkinson’s Disease (PD), impacting patients’ quality of life. Both pain and PD conditions cause cortical excitability reduction and non-invasive brain stimulation. Mental representation techniques are thought to be able to counteract it, also resulting effectively in chronic pain conditions. We aim to conduct two independent studies in order to evaluate the efficacy of transcranial direct current stimulation (tDCS) and mental representation protocol in the management of pain in PD patients during the ON state: (1) tDCS over the Primary Motor Cortex (M1); and (2) Action Observation (AO) and Motor Imagery (MI) training through a Brain-Computer Interface (BCI) using Virtual Reality (AO + MI-BCI). Both studies will include 32 subjects in a longitudinal prospective parallel randomized controlled trial design under different blinding conditions. The main outcomes will be score changes in King’s Parkinson’s Disease Pain Scale, Brief Pain Inventory, Temporal Summation, Conditioned Pain Modulation, and Pain Pressure Threshold. Assessment will be performed pre-intervention, post-intervention, and 15 days post-intervention, in both ON and OFF states.

2021 ◽  
Vol 14 (3) ◽  
pp. 571-578
Author(s):  
Lubos Brabenec ◽  
Patricia Klobusiakova ◽  
Patrik Simko ◽  
Milena Kostalova ◽  
Jiri Mekyska ◽  
...  

2021 ◽  
pp. 154596832110231
Author(s):  
Kishoree Sangarapillai ◽  
Benjamin M. Norman ◽  
Quincy J. Almeida

Background. Exercise is increasingly becoming recognized as an important adjunct to medications in the clinical management of Parkinson’s disease (PD). Boxing and sensory exercise have shown immediate benefits, but whether they continue beyond program completion is unknown. This study aimed to investigate the effects of boxing and sensory training on motor symptoms of PD, and whether these benefits remain upon completion of the intervention. Methods. In this 20-week double-blinded randomized controlled trial, 40 participants with idiopathic PD were randomized into 2 treatment groups, (n = 20) boxing or (n = 20) sensory exercise. Participants completed 10 weeks of intervention. Motor symptoms were assessed at (week 0, 10, and 20) using the Unified Parkinson’s Disease Rating Scale (UPDRS-III). Data were analyzed using SPSS, and repeated-measures ANOVA was conducted. Results. A significant interaction effect between groups and time were observed F(1, 39) = 4.566, P = .036, where the sensory group improved in comparison to the boxing group. Post hoc analysis revealed that in comparison to boxing, the effects of exercise did not wear off at washout (week 20) P < .006. Conclusion. Future rehabilitation research should incorporate similar measures to explore whether effects of exercise wear off post intervention.


2018 ◽  
Vol 129 (4) ◽  
pp. e9
Author(s):  
L. Brabenec ◽  
J. Mekyska ◽  
Z. Galáž ◽  
P. Klobušiakova ◽  
M. Koštálová ◽  
...  

2019 ◽  
Vol 30 (8) ◽  
pp. 821-837 ◽  
Author(s):  
Sharon Israely ◽  
Gerry Leisman

Abstract Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson’s disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson’s disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette’s syndrome, Alzheimer’s disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.


Sign in / Sign up

Export Citation Format

Share Document