scholarly journals All -Trans Retinoic Acid Fosters the Multifarious U87MG Cell Line as a Model of Glioblastoma

2021 ◽  
Vol 11 (6) ◽  
pp. 812
Author(s):  
Markéta Pokorná ◽  
Michael Hudec ◽  
Iva Juříčková ◽  
Michael Vácha ◽  
Zdeňka Polívková ◽  
...  

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5042-5042
Author(s):  
Pengcheng He ◽  
Mei Zhang ◽  
Jun Qi ◽  
Xiaoning Wang ◽  
Jieying Xi ◽  
...  

Abstract Although 90% patients with untreated acute promyelocytic leukemia(APL) obtain complete remission because of the usage of all-trans retinoic acid(ATRA), patients with ATRA-resistance are increased gradually. ATRA-resistance has become one of the main causes which affect the long-term therapeutic efficacy of APL. The mechanisms of ATRA-resistance are complex, which probably involve the metabolism of ATRA, abnormal expression of cellular retinoic acid binding protein(CRABP) and P-glycoprotein(P-gp), mutation of RARα and aberration translocation of APL. However, in these previous researches, it was one or a few proteins but not the entirety proteins that were emphasized on the mechanisms of ATRA-resistance. Comparative proteomics can analyze the entire protein expression in cells in whole and has the superiority in screening the drug-resistance proteins differentially expressed. In order to investigate the mechanisms of ATRA-resistance in APL in whole, we compared and analyzed the protein expression profiles between MR2 cells(APL cell line with ATRA-resistance) and NB4 cells(APL cell line with ATRA-sensitiveness) by comparative proteomics. After the total proteins of MR2 cells and NB4 cells were extracted respectively, they were separated by two-dimensional electrophoresis(2-DE). The differences in proteome profile between MR2 cells and NB4 cells analyzed by ImageMaster™ 2D Platinum software. The average protein spots in 2-DE maps of MR2 and NB4 cells were 1160±51 and 1068±33 respectively. 8 protein spots were selected to be identified by Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), in which the quantity of the protein differentially expressed was more than two times(≥2 or ≤0.5) between MR2 and NB4 cells’ 2-DE map. They were all successfully identified and their definite information was obtained. Among them, 6 proteins were probably involved in the mechanisms of ATRA-resistance in APL and they were Cofilin-1, Elongation factor 1-beta (EF-1β), Tropomyosin isoform(TM), High mobility group protein B1(HMGB1), Ran-specific GTPase-activating protein (RanGAP1) and Galectin-1. Moreover, so far there was no related report on the roles of HMGB1, RanGAP1 and Galectin-1 in the mechanisms of ATRA-resistance in APL. These differential proteins identified provide the new clues for us to further elucidate the mechanisms of ATRA-resistance from multiple factor.


Sign in / Sign up

Export Citation Format

Share Document