scholarly journals Online Prediction of Lead Seizures from iEEG Data

2021 ◽  
Vol 11 (12) ◽  
pp. 1554
Author(s):  
Hsiang-Han Chen ◽  
Han-Tai Shiao ◽  
Vladimir Cherkassky

We describe a novel system for online prediction of lead seizures from long-term intracranial electroencephalogram (iEEG) recordings for canines with naturally occurring epilepsy. This study adopts new specification of lead seizures, reflecting strong clustering of seizures in observed data. This clustering results in fewer lead seizures (~7 lead seizures per dog), and hence new challenges for online seizure prediction, that are addressed in the proposed system. In particular, the machine learning part of the system is implemented using the group learning method suitable for modeling sparse and noisy seizure data. In addition, several modifications for the proposed system are introduced to cope with the non-stationarity of a noisy iEEG signal. They include: (1) periodic retraining of the SVM classifier using most recent training data; (2) removing samples with noisy labels from training data; and (3) introducing a new adaptive post-processing technique for combining many predictions made for 20 s windows into a single prediction for a 4 h segment. Application of the proposed system requires only two lead seizures for training the initial model, and results in high prediction performance for all four dogs (with mean 0.84 sensitivity, 0.27 time-in-warning, and 0.78 false-positive rate per day). The proposed system achieves accurate prediction of lead seizures during long-term test periods, 3–16 lead seizures during a 169–364 day test period, whereas earlier studies did not differentiate between lead vs. non-lead seizures and used much shorter test periods (~few days long).

Author(s):  
Hsiang-Han Chen ◽  
Han-Tai Shiao ◽  
Vladimir Cherkassky

We describe a novel system for online prediction of lead seizures from long-term intracranial electroencephalogram (iEEG) recordings for canines with naturally occurring epilepsy. This study adopts new specification of lead seizures, reflecting strong clustering of seizures in observed data. This clustering results in fewer lead seizures (~7 lead seizures per dog), and hence new challenges for online seizure prediction, that are addressed in the proposed system. In particular, machine learning part of the system is implemented using the Group Learning method suitable for modeling sparse and noisy seizure data. In addition, several modifications for the proposed system are introduced to cope with non-stationarity of noisy iEEG signal. They include: (1) periodic re-training of SVM classifier using most recent training data; (2) removing samples with noisy labels from training data; (3) introducing new adaptive post-processing technique for combining many predictions made for 20-second windows into a single prediction for 4 hr segment. Application of the proposed system requires only 2 lead seizures for training the initial model, and results in high prediction performance for all four dogs (with mean 0.84 sensitivity, 0.27 time-in-warning, and 0.78 false-positive rate per day). Proposed system achieves accurate prediction of lead seizures during long-term test periods, 3–16 lead seizures during 169–364 days test period, whereas earlier studies did not differentiate between lead vs. non-lead seizures and used much shorter test periods (~few days long).


2020 ◽  
Author(s):  
Poomipat Boonyakitanont ◽  
Apiwat Lek-uthai ◽  
Jitkomut Songsiri

AbstractThis article aims to design an automatic detection algorithm of epileptic seizure onsets and offsets in scalp EEGs. A proposed scheme consists of two sequential steps: the detection of seizure episodes, and the determination of seizure onsets and offsets in long EEG recordings. We introduce a neural network-based model called ScoreNet as a post-processing technique to determine the seizure onsets and offsets in EEGs. A cost function called a log-dice loss that has an analogous meaning to F1 is proposed to handle an imbalanced data problem. In combination with several classifiers including random forest, CNN, and logistic regression, the ScoreNet is then verified on the CHB-MIT Scalp EEG database. As a result, in seizure detection, the ScoreNet can significantly improve F1 to 70.15% and can considerably reduce false positive rate per hour to 0.05 on average. In addition, we propose detection delay metric, an effective latency index as a summation of the exponential of delays, that includes undetected events into account. The index can provide a better insight into onset and offset detection than conventional time-based metrics.


Author(s):  
Ramasubramanian Sundararajan ◽  
Hima Patel ◽  
Manisha Srivastava

Traditionally supervised learning algorithms are built using labeled training data. Accurate labels are essential to guide the classifier towards an optimal separation between the classes. However, there are several real world scenarios where the class labels at an instance level may be unavailable or imprecise or difficult to obtain, or in situations where the problem is naturally posed as one of classifying instance groups. To tackle these challenges, we draw your attention towards Multi Instance Learning (MIL) algorithms where labels are available at a bag level rather than at an instance level. In this chapter, we motivate the need for MIL algorithms and describe an ensemble based method, wherein the members of the ensemble are lazy learning classifiers using the Citation Nearest Neighbour method. Diversity among the ensemble methods is achieved by optimizing their parameters using a multi-objective optimization method, with the objective being to maximize positive class accuracy and minimize false positive rate. We demonstrate results of the methodology on the standard Musk 1 dataset.


2018 ◽  
Vol 164 ◽  
pp. 01047 ◽  
Author(s):  
Viny Christanti Mawardi ◽  
Niko Susanto ◽  
Dali Santun Naga

Any mistake in writing of a document will cause the information to be told falsely. These days, most of the document is written with a computer. For that reason, spelling correction is needed to solve any writing mistakes. This design process discuss about the making of spelling correction for document text in Indonesian language with document's text as its input and a .txt file as its output. For the realization, 5 000 news articles have been used as training data. Methods used includes Finite State Automata (FSA), Levenshtein distance, and N-gram. The results of this designing process are shown by perplexity evaluation, correction hit rate and false positive rate. Perplexity with the smallest value is a unigram with value 1.14. On the other hand, the highest percentage of correction hit rate is bigram and trigram with value 71.20 %, but bigram is superior in processing time average which is 01:21.23 min. The false positive rate of unigram, bigram, and trigram has the same percentage which is 4.15 %. Due to the disadvantages at using FSA method, modification is done and produce bigram's correction hit rate as high as 85.44 %.


Computers ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 35 ◽  
Author(s):  
Xuan Dau Hoang ◽  
Ngoc Tuong Nguyen

Defacement attacks have long been considered one of prime threats to websites and web applications of companies, enterprises, and government organizations. Defacement attacks can bring serious consequences to owners of websites, including immediate interruption of website operations and damage of the owner reputation, which may result in huge financial losses. Many solutions have been researched and deployed for monitoring and detection of website defacement attacks, such as those based on checksum comparison, diff comparison, DOM tree analysis, and complicated algorithms. However, some solutions only work on static websites and others demand extensive computing resources. This paper proposes a hybrid defacement detection model based on the combination of the machine learning-based detection and the signature-based detection. The machine learning-based detection first constructs a detection profile using training data of both normal and defaced web pages. Then, it uses the profile to classify monitored web pages into either normal or attacked. The machine learning-based component can effectively detect defacements for both static pages and dynamic pages. On the other hand, the signature-based detection is used to boost the model’s processing performance for common types of defacements. Extensive experiments show that our model produces an overall accuracy of more than 99.26% and a false positive rate of about 0.27%. Moreover, our model is suitable for implementation of a real-time website defacement monitoring system because it does not demand extensive computing resources.


Author(s):  
Zi Yang ◽  
Mingli Chen ◽  
Mahdieh Kazemimoghadam ◽  
Lin Ma ◽  
Strahinja Stojadinovic ◽  
...  

Abstract Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve (AUC) of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.


2020 ◽  
pp. 2687-2694
Author(s):  
Mahmood A. Jumaah ◽  
Ammar Ibrahim Shihab ◽  
Akeel Abdulkareem Farhan

     Epilepsy is one of the most common diseases of the nervous system around the world, affecting all age groups and causing seizures leading to loss of control for a period of time. This study presents a seizure detection algorithm that uses Discrete Cosine Transformation (DCT) type II to transform the signal into frequency-domain and extracts energy features from 16 sub-bands. Also, an automatic channel selection method is proposed to select the best subset among 23 channels based on the maximum variance. Data are segmented into frames of  one Second length without overlapping between successive frames. K-Nearest Neighbour (KNN) model is used to detect those frames either to ictal (seizure) or interictal (non-seizure) based on Euclidean distance. The experimental results are tested on 21 patients included in the CHB-MIT dataset. The average F1-score was found to be 93.12, whereas the False-Positive Rate (FPR) average was determined to be 0.07.


Author(s):  
Anna Lin ◽  
Soon Song ◽  
Nancy Wang

IntroductionStats NZ’s Integrated Data Infrastructure (IDI) is a linked longitudinal database combining administrative and survey data. Previously, false positive linkages (FP) in the IDI were assessed by clerical review of a sample of linked records, which was time consuming and subject to inconsistency. Objectives and ApproachA modelled approach, ‘SoLinks’ has been developed in order to automate the FP estimation process for the IDI. It uses a logistic regression model to calculate the probability that a given link is a true match. The model is based on the agreement types defined for four key linking variables – first name, last name, sex, and date of birth. Exemptions have been given to some specific types of links that we believe to be high quality true matches. The training data used to estimate the model parameters was based on the outcomes of the clerical review process over several years. ResultsWe have compared the FP rates estimated through clerical review to the ones estimated through the SoLinks model. Some SoLinks estimates fall outside the 95% confidence intervals of the clerically reviewed ones. This may be the result of the pre-defined probabilities for the specific types of links are too high. ConclusionThe automation of FP checking has saved analyst time and resource. The modelled FP estimates have been more stable across time than the previous clerical reviews. As this model estimates the probability of a true match at the individual link level, we may provide this probability to researchers so that they can calculate linked quality indicators for their research populations.


2019 ◽  
Vol 2019 (4) ◽  
pp. 292-310 ◽  
Author(s):  
Sanjit Bhat ◽  
David Lu ◽  
Albert Kwon ◽  
Srinivas Devadas

Abstract In recent years, there have been several works that use website fingerprinting techniques to enable a local adversary to determine which website a Tor user visits. While the current state-of-the-art attack, which uses deep learning, outperforms prior art with medium to large amounts of data, it attains marginal to no accuracy improvements when both use small amounts of training data. In this work, we propose Var-CNN, a website fingerprinting attack that leverages deep learning techniques along with novel insights specific to packet sequence classification. In open-world settings with large amounts of data, Var-CNN attains over 1% higher true positive rate (TPR) than state-of-the-art attacks while achieving 4× lower false positive rate (FPR). Var-CNN’s improvements are especially notable in low-data scenarios, where it reduces the FPR of prior art by 3.12% while increasing the TPR by 13%. Overall, insights used to develop Var-CNN can be applied to future deep learning based attacks, and substantially reduce the amount of training data needed to perform a successful website fingerprinting attack. This shortens the time needed for data collection and lowers the likelihood of having data staleness issues.


Sign in / Sign up

Export Citation Format

Share Document