scholarly journals Presbycusis and the Aging of Eye Movement: Common Attention Mechanisms

2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Martin Chavant ◽  
Zoï Kapoula

Presbycusis, physiological age-related hearing loss, is a major health problem because it is the most common cause of hearing impairment, and its impact will grow in the coming years with the aging population. Besides auditory consequences, the literature recently found an association between hearing loss and cognitive decline over the last two decades, emphasizing the importance of the early detection of presbycusis. However, the current hearing tests are not sufficient to detect presbycusis in some cases. Furthermore, the underlying mechanisms of this association are still under discussion, calling for a new field of research on that topic. In that context, this study investigates for the first time the interaction between presbycusis, eye movement latency and Stroop scores for a normal aging population. Hearing abilities, eye movement latency and the Stroop Victoria test were measured for 69 elderly (mean 66.7 ± 8.4) and 30 young (mean 25.3 ± 2.7) participants. The results indicated a significant relationship between saccade latency and speech audiometry in the silence score, independently from age. These promising results suggest common attentional mechanisms between speech processing and saccade latency. The results are discussed regarding the relationship between hearing and cognition, and regarding the perspective of expanding new tools for presbycusis diagnosis.

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Alessandra Fioretti ◽  
Otello Poli ◽  
Theodoros Varakliotis ◽  
Alberto Eibenstein

The physiological age-related hearing loss is defined as presbycusis and it is characterized by reduced hearing sensitivity and problems in understanding spoken language especially in a noisy environment. In elderly the reduced speech recognition is generally caused by a reduction of the cochlear cells in the organ of Corti and degeneration of the central auditory pathways. In order to have a complete management strategy of central and peripheral presbycusis the diagnostic evaluation should include clinical ENT examination, standard audiological tests, and tests of central auditory function. Treatment should include not only the appropriate instruments for peripheral compensation but also auditory rehabilitative training and counseling to prevent social isolation and loss of autonomy. Other common hearing disorders in elderly are tinnitus and hyperacusis which are often undervalued. Tinnitus is characterized by the perception of a “phantom” sound due to abnormal auditory perception. Hyperacusis is defined as a reduced tolerance to ordinary environmental sounds. Furthermore auditory, visual, nociceptive, and proprioceptive systems may be involved together in a possible context of “sensorineural aging.” The aim of this review is to underline the presence of hearing disorders like tinnitus and hyperacusis which in many cases coexist with hearing loss in elderly.


2017 ◽  
Vol 60 (9) ◽  
pp. 2394-2405 ◽  
Author(s):  
Lionel Fontan ◽  
Isabelle Ferrané ◽  
Jérôme Farinas ◽  
Julien Pinquier ◽  
Julien Tardieu ◽  
...  

Purpose The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Method Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Results Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Conclusion Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Margreet Vogelzang ◽  
Christiane M. Thiel ◽  
Stephanie Rosemann ◽  
Jochem W. Rieger ◽  
Esther Ruigendijk

AbstractAge-related hearing loss typically affects the hearing of high frequencies in older adults. Such hearing loss influences the processing of spoken language, including higher-level processing such as that of complex sentences. Hearing aids may alleviate some of the speech processing disadvantages associated with hearing loss. However, little is known about the relation between hearing loss, hearing aid use, and their effects on higher-level language processes. This neuroimaging (fMRI) study examined these factors by measuring the comprehension and neural processing of simple and complex spoken sentences in hard-of-hearing older adults (n = 39). Neither hearing loss severity nor hearing aid experience influenced sentence comprehension at the behavioral level. In contrast, hearing loss severity was associated with increased activity in left superior frontal areas and the left anterior insula, but only when processing specific complex sentences (i.e. object-before-subject) compared to simple sentences. Longer hearing aid experience in a sub-set of participants (n = 19) was associated with recruitment of several areas outside of the core speech processing network in the right hemisphere, including the cerebellum, the precentral gyrus, and the cingulate cortex, but only when processing complex sentences. Overall, these results indicate that brain activation for language processing is affected by hearing loss as well as subsequent hearing aid use. Crucially, they show that these effects become apparent through investigation of complex but not simple sentences.


2019 ◽  
Vol 9 (11) ◽  
pp. 302
Author(s):  
Yong Wang ◽  
Meijian Wang ◽  
Ruili Xie

Age-related hearing loss (ARHL) is associated with weakened inhibition in the central auditory nervous system including the cochlear nucleus. One of the main inhibitory neurons of the cochlear nucleus is the D-stellate neuron, which provides extensive glycinergic inhibition within the local neural network. It remains unclear how physiological activities of D-stellate neurons change during ARHL and what are the underlying mechanisms. Using in vitro whole-cell patch clamp technique, we studied the intrinsic membrane properties of D-stellate neurons, the changes of their firing properties, and the underlying mechanisms in CBA/CaJ mice at the ages of 3–4 months (young), 17–19 months (middle age), and 27–33 months (aged). We found that the intrinsic membrane properties of D-stellate neurons were unchanged among these three age groups. However, these neurons showed decreased firing rate with age in response to sustained auditory nerve stimulation. Further investigation showed that auditory nerve-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced in strength with age. These findings suggest that D-stellate neurons receive weakened synaptic inputs from the auditory nerve and decreased sound driven activity with age, which are expected to reduce the overall inhibition and enhance the central gain in the cochlear nucleus during ARHL.


2020 ◽  
Author(s):  
Julia Pauquet ◽  
Christiane Thiel ◽  
Christian Mathys ◽  
Stephanie Rosemann

Age-related hearing loss has been associated with increased recruitment of frontal brain areas during speech perception to compensate for the decline in auditory input. This additional recruitment may bind resources otherwise needed for understanding speech. However, it is unknown how increased demands on listening interact with increasing cognitive demands when processing speech in age-related hearing loss. The current study used a full-sentence working memory task manipulating demands on working memory and listening and studied untreated mild to moderate hard of hearing (n = 20) and normal-hearing age-matched participants (n = 19) with functional MRI. On the behavioral level, we found a significant interaction of memory load and listening condition; this was, however, similar for both groups. Under low, but not high memory load, listening condition significantly influenced task performance. Similarly, under easy but not difficult listening conditions, memory load had a significant effect on task performance. On the neural level, we found increased responses under high compared to low memory load conditions in the left supramarginal gyrus, left middle frontal gyrus and left supplementary motor cortex regardless of hearing ability. Furthermore, we found increased responses in the bilateral superior temporal gyri under easy compared to difficult listening conditions. We found no group differences nor interactions of groups with memory load or listening conditions. This suggests that memory load and listening conditions interacted on a behavioral level, however, only the increased memory load was reflected in increased neural responses in frontal and parietal brain regions. Hence, when evaluating listening abilities in elderly participants, memory load should be considered as it might interfere with the assessed performance. We could not find any further evidence that neural mechanisms of auditory speech processing are affected by mild to moderate age-related hearing loss.


2017 ◽  
Author(s):  
Muriel TN Panouillères ◽  
Riikka Möttönen

AbstractOlder adults often experience difficulties in understanding speech, partly because of age-related hearing loss. In young adults, activity of the left articulatory motor cortex is enhanced and it interacts with the auditory cortex via the left-hemispheric dorsal stream during speech processing. Little is known about the effect of ageing and age-related hearing loss on this auditory-motor interaction and speech processing in the articulatory motor cortex. It has been proposed that up-regulation of the motor system during speech processing could compensate for hearing loss and auditory processing deficits in older adults. Alternatively, age-related auditory deficits could reduce and distort the input from the auditory cortex to the articulatory motor cortex, suppressing recruitment of the motor system during listening to speech. The aim of the present study was to investigate the effects of ageing and age-related hearing loss on the excitability of the tongue motor cortex during listening to spoken sentences using transcranial magnetic stimulation and electromyography. Our results show that the excitability of the tongue motor cortex was facilitated during listening to speech in young and older adults with normal hearing. This facilitation was significantly reduced in older adults with hearing loss. These findings suggest a decline of auditory-motor processing of speech in adults with age-related hearing loss.


2016 ◽  
Vol 17 (2) ◽  
pp. 68-73
Author(s):  
Dong-Wook Kim ◽  
Tae-Young Lee ◽  
Da-Hye Choi ◽  
Taek-Yeong Kim ◽  
Hyun-Chul Moon

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1686
Author(s):  
Adelaida M. Celaya ◽  
Lourdes Rodríguez-de la Rosa ◽  
Jose M. Bermúdez-Muñoz ◽  
José M. Zubeldia ◽  
Carlos Romá-Mateo ◽  
...  

Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/− mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.


Sign in / Sign up

Export Citation Format

Share Document