scholarly journals IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1686
Author(s):  
Adelaida M. Celaya ◽  
Lourdes Rodríguez-de la Rosa ◽  
Jose M. Bermúdez-Muñoz ◽  
José M. Zubeldia ◽  
Carlos Romá-Mateo ◽  
...  

Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/− mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.

2021 ◽  
Vol 22 (12) ◽  
pp. 6368
Author(s):  
Maurizio Cortada ◽  
Soledad Levano ◽  
Daniel Bodmer

Hearing loss affects many people worldwide and occurs often as a result of age, ototoxic drugs and/or excessive noise exposure. With a growing number of elderly people, the number of people suffering from hearing loss will also increase in the future. Despite the high number of affected people, for most patients there is no curative therapy for hearing loss and hearing aids or cochlea implants remain the only option. Important treatment approaches for hearing loss include the development of regenerative therapies or the inhibition of cell death/promotion of cell survival pathways. The mammalian target of rapamycin (mTOR) pathway is a central regulator of cell growth, is involved in cell survival, and has been shown to be implicated in many age-related diseases. In the inner ear, mTOR signaling has also started to gain attention recently. In this review, we will emphasize recent discoveries of mTOR signaling in the inner ear and discuss implications for possible treatments for hearing restoration.


2020 ◽  
Vol 10 (10) ◽  
pp. 732
Author(s):  
Tang-Chuan Wang ◽  
Ta-Yuan Chang ◽  
Richard Tyler ◽  
Ying-Ju Lin ◽  
Wen-Miin Liang ◽  
...  

Long-term noise exposure often results in noise induced hearing loss (NIHL). Tinnitus, the generation of phantom sounds, can also result from noise exposure, although understanding of its underlying mechanisms are limited. Recent studies, however, are shedding light on the neural processes involved in NIHL and tinnitus, leading to potential new and innovative treatments. This review focuses on the assessment of NIHL, available treatments, and development of new pharmacologic and non-pharmacologic treatments based on recent studies of central auditory plasticity and adaptive changes in hearing. We discuss the mechanisms and maladaptive plasticity of NIHL, neuronal aspects of tinnitus triggers, and mechanisms such as tinnitus-associated neural changes at the cochlear nucleus underlying the generation of tinnitus after noise-induced deafferentation. We include observations from recent studies, including our own studies on associated risks and emerging treatments for tinnitus. Increasing knowledge of neural plasticity and adaptive changes in the central auditory system suggest that NIHL is preventable and transient abnormalities may be reversable, although ongoing research in assessment and early detection of hearing difficulties is still urgently needed. Since no treatment can yet reverse noise-related damage completely, preventative strategies and increased awareness of hearing health are essential.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S257-S257
Author(s):  
Rehab A Sherlala ◽  
Candace M Kammerer ◽  
Allison L Kuipers ◽  
Mary K Wojczynski ◽  
Svetlana Ukraintseva ◽  
...  

Abstract Serum levels of insulin-like growth factor 1 (IGF-1) and measures of adiposity, such as body mass index (BMI), are associated with susceptibility to age-related diseases. Previous reports of the relationship between IGF-1 and BMI ranged from positive to negative to no relationship, perhaps because previous reports studied different age cohorts. Using data on 4270 participants (aged 24-110 years) from the Long Life Family Study, we investigated the relationship between IGF-1 and BMI overall and by age groups. IGF-1 and BMI were positively correlated in the total sample (β=0.161, r2= 0.0038, p=1.8-05). However, further analyses revealed that the relationship between IGF-1 and BMI varied by age quartile: in the 1st quartile (24-58yo) the relationship was negative (β=−0.204, r2= 0.011, p=0.0008); in the 2nd quartile (59-66yo) the relationship was negative but non-significant (β=−0.069, r2= 0.0012, p=0.28); in the 3rd quartile (67-86yo) the relationship was positive but non-significant (β=0.106, r2= 0.002, p=0.13); and in the 4th quartile (87-110yo) the relationship was positive (β=0.388, r2= 0.019, p=1.2−05). This pattern did not differ by sex. We also detected a similar age-related pattern between IGF-1 and BMI using an independent dataset (NHANES III), comprising 2550 men and women aged 20-90 years. Our results may clarify some of the inconsistency in previous literature about the relationship between IGF-1 and BMI. Additional studies of IGF-1 and adiposity measures are needed to better understand the underlying mechanisms involved.


2020 ◽  
Vol 13 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Luigi De Maria ◽  
Antonio Caputi ◽  
Rodolfo Sardone ◽  
Enza Sabrina Silvana Cannone ◽  
Francesca Mansi ◽  
...  

Background: Age-Related Hearing Loss (ARHL) is a gradual and irreversible age-dependent decline in auditory function. There is still no consensus on the long-term functional effects of noise exposure on ARHL. Objective: This study aimed to compare the prevalence of ARHL in an elderly population occupationally exposed to noise in a non-exposed population. Methods: The population was divided into two groups: a group of 482 subjects professionally exposed to noise for over 10 years and a group of 1129 non-exposed subjects. Among the exposed subjects, a subgroup of 298 who worked for over 10 years in the glassware industry was selected. All the participants underwent a thorough otorhinolaryngological examination. Results: The presence of ARHL was found in 81% of exposed subjects and in 4% of non-exposed subjects. In the sub-group of glassware workers, the prevalence was 88%. The statistical analysis showed a significant association between previous occupational exposure to noise and ARHL (OR = 1.09; 95% CI = 1.067-1.124; p = 0.0012) and between exposure to the glassware industry and ARHL (OR = 1.89; 95% CI = 1.78-1.96; p = 0.006). Conclusion: Consistent with recent studies, we found a significantly higher prevalence of ARHL among workers exposed to noise; however, further studies are needed to support these findings.


2013 ◽  
Vol 271 (6) ◽  
pp. 1351-1354 ◽  
Author(s):  
Min Xiong ◽  
Chuanhong Yang ◽  
Huangwen Lai ◽  
Jian Wang

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255356
Author(s):  
Bamini Gopinath ◽  
Catherine McMahon ◽  
Diana Tang ◽  
George Burlutsky ◽  
Paul Mitchell

There is paucity of population-based data on occupational noise exposure and risk of age-related hearing loss. Therefore, we assessed cross-sectional and longitudinal associations of past workplace noise exposure with hearing loss in older adults. At baseline, 1923 participants aged 50+ years with audiological and occupational noise exposure data included for analysis. The pure-tone average of frequencies 0.5, 1.0, 2.0 and 4.0 kHz (PTA0.5-4KHz) >25 dB HL in the better ear, established the presence of hearing loss. Participants reported exposure to workplace noise, and the severity and duration of this exposure. Prior occupational noise exposure was associated with a 2-fold increased odds of moderate-to-severe hearing loss: multivariable-adjusted OR 2.35 (95% CI 1.45–3.79). Exposure to workplace noise for >10 years increased the odds of having any hearing loss (OR 2.39, 95% CI 1.37–4.19) and moderate-to-severe hearing loss (OR 6.80, 95% CI 2.97–15.60). Among participants reporting past workplace noise exposure at baseline the 10-year incidence of hearing loss was 35.5% versus 29.1% in those who had no workplace noise exposure. Workplace noise exposure was associated with a greater risk of incident hearing loss during the 10-year follow-up: multivariable-adjusted OR 1.39 (95% CI 1.13–1.71). Prior occupational noise exposure was not associated with hearing loss progression. Workplace noise exposure increased the risk of incident hearing loss in older adults. Our findings underscore the importance of preventive measures which diminish noise exposure in the workplace, which could potentially contribute towards reducing the burden of hearing loss in later life.


2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Martin Chavant ◽  
Zoï Kapoula

Presbycusis, physiological age-related hearing loss, is a major health problem because it is the most common cause of hearing impairment, and its impact will grow in the coming years with the aging population. Besides auditory consequences, the literature recently found an association between hearing loss and cognitive decline over the last two decades, emphasizing the importance of the early detection of presbycusis. However, the current hearing tests are not sufficient to detect presbycusis in some cases. Furthermore, the underlying mechanisms of this association are still under discussion, calling for a new field of research on that topic. In that context, this study investigates for the first time the interaction between presbycusis, eye movement latency and Stroop scores for a normal aging population. Hearing abilities, eye movement latency and the Stroop Victoria test were measured for 69 elderly (mean 66.7 ± 8.4) and 30 young (mean 25.3 ± 2.7) participants. The results indicated a significant relationship between saccade latency and speech audiometry in the silence score, independently from age. These promising results suggest common attentional mechanisms between speech processing and saccade latency. The results are discussed regarding the relationship between hearing and cognition, and regarding the perspective of expanding new tools for presbycusis diagnosis.


2021 ◽  
Author(s):  
Jana Van Canneyt ◽  
Jan Wouters ◽  
Tom Francart

AbstractAuditory processing is affected by advancing age and hearing loss, but the underlying mechanisms are still unclear. We investigated the effects of age and hearing loss on temporal processing of naturalistic stimuli in the auditory system. We analysed neural phase-locking to the fundamental frequency of the voice (f0) in 54 normal-hearing and 14 hearing-impaired adults between 17 and 82 years old. We found that both subcortical and cortical neural sources contributed to the responses. Results indicated that advancing age was related to smaller responses with less cortical response contributions, consistent with an age-related decrease in neural phase-locking ability. Conversely, hearing impaired subjects displayed larger responses compared to age-matched normal hearing controls. This was due to additional cortical response contributions which were stronger for participants with more severe hearing loss. This is consistent with the recruitment of additional cortical sources for auditory processing in persons with hearing impairment.


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Hardini Tjan ◽  
Fransiska Lintong ◽  
Wenny Supit

Abstract: Noise induced hearing loss is caused by noise loud in the long period and a noisy work environment. Noisy work environment is a major problem in occupational health in various countries. The relationship between excessive noise exposure and hearing loss has been recognised since ancient times. Early epidemiological studies of noise induced hearing loss explored the damage risk relationship between occupational noise exposure level and the degree of hearing loss. The purpose of this study is to determine effect of engine noise electronics to auditory disfunction. The research methodeology used is an analytical method with a cross sectional approach. Samples were of 20 person taken from workers at the playground timezone and amazone. Data were obtained through questionnaires and examination of hearing function with the audiometri. Data were analyzed by using the Statistical Product and Service Solutions program (SPSS) and using the Fisher Exact test. Conclusion: The results showed that : There is a 75% hearing loss in all worker. The results of bivariate analysis showed there is no significant association between the hearing loss with the intensity level of noise (p = 0,032). The most common hearing loss is sensorineural deafness which generally occours in both ear. From the result of this study it can be concluded that the workers who work in a place that has the high intensity noise have greater risk of suffening from hearing loss. Keywords: Timezone and Amazone Workers, Noisy, Hearing.     Abstrak: Gangguan pendengaran akibat bising ialah gangguan pendengaran yang disebabkan akibat terpajan oleh bising yang cukup keras dalam jangka waktu yang cukup lama dan biasanya disebabkan oleh bising di lingkungan kerja. Bising lingkungan kerja merupakan masalah utama pada kesehatan kerja di berbagai negara. Hubungan antara paparan bising yang berlebihan dan kehilangan pendengaran telah dikenal sejak zaman kuno. Awal studi epidemiologi, gangguan pendengaran yang disebabkan oleh bising mengeksplorasi adanya hubungan atau faktor resiko antara pekerjaan, paparan tingkat kebisingan dan derajat gangguan pendengaran. Tujuan penelitian ini untuk mengetahui efek bising mesin elektronika terhadap gangguan fungsi pendengaran. Metode penelitian yang digunakan yaitu metode analitik dengan menggunakan rancangan cross sectional study. Sampel berjumlah 20 orang yang diambil dari pekerja di tempat bermain timezone dan amazone. Data diperoleh melalui kuisioner dan pemeriksaan fungsi pendengaran dengan menggunakan Audiometri. Data dianalisis dengan menggunakan Statistical Program Product and Service Solution (SPSS) dan menggunakan uji Fisher Exact. Simpulan: Hasil penelitian menunjukkan bahwa : Terdapat gangguan pendengaran sebesar 75 % pada seluruh pekerja. Hasil analisis bivariat menunjukan ada hubungan yang bermakna antara gangguan pendengaran dengan tingkat intensitas bising (p =  0,032).  Gangguan pendengaran yang paling banyak diderita oleh pekerja adalah tuli sensorineural (persepsi) yang umumnya terjadi pada kedua telinga. Dari hasil penelitian ini dapat disimpulkan bahwa pekerja yang bekerja pada intensitas bising yang tinggi memiliki resiko lebih besar menderita gangguan pendengaran. Kata Kunci: Pekerja Timezone & Amazone, Bising, Pendengaran


Sign in / Sign up

Export Citation Format

Share Document