The impact of vertical vegetation on thermal performance of high-rise office building facades in Mediterranean climate

2021 ◽  
Vol 236 ◽  
pp. 110761
Author(s):  
Polikseni Bano ◽  
Sokol Dervishi
Arsitektura ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 129
Author(s):  
Sri Yuliani ◽  
Wiwik Setyaningsih

<p class="Abstract"><em>The surface temperature of the building material may release a heat load in the micro-environment. The largest building envelope receives the heat load of solar radiation is the roof. The strategic roof position at the top of the building has the opportunity to radiate heat received into the environment. Heat emissions lead to rising temperatures, so it is necessary to lower the temperature in micro-environment. When the heat of the building is not lowered will lead to an increase in the urban heat island (UHI). The objective of the study was to find the relationship between the thermal performance of the roof of the building and the energy efficiency in the high-rise building, in order to establish efficient thermal comfort. The research method uses experimental way in real model which is in Surakarta City, as humid tropical climate area. The result of the study is a comparison of the heat performance of three roofing materials which would later recommend the criteria of energy efficient roof for high buildings.</em><em></em></p>


2021 ◽  
Author(s):  
Chafik Murad

Cantilevered concrete balcony slabs are being investigated in high-rise (MURBs) to control thermal bridging in terms of energy efficiency and thermal comfort where the use of a proprietary thermal break was the prime application as a solution to improving energy efficiency. This MRP investigated the thermal performance of using a lower U-value framed glazing condition and an insulated curb condition and developed assemblies in scenarios that were simulated in THERM, and focused on the technical performance of thermal comfort benefit of insulated curb condition of 12.7 mm thick EPS. Concrete surface temperatures were significantly increased in values from 4.8 °C to 9.6 °C and from 6.2 °C to 10.0 °C above balcony slab and from 6.7 °C to 10.8 °C below slab when an insulated curb condition was used in conventional scenarios and in a lower U-value framed condition scenario with no proprietary thermal break added. U-values are reduced 10% to 18% for the upper surface of balcony slab and 4% reduction of the overall U-values when an insulated curb condition is incorporated.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2030
Author(s):  
Mansoureh Gholami ◽  
Alberto Barbaresi ◽  
Patrizia Tassinari ◽  
Marco Bovo ◽  
Daniele Torreggiani

In urban areas, a considerable proportion of energy demand is allocated to buildings. Since rooftops constitute one-fourth of all urban surfaces, an increasing amount of attention is paid to achieving the most efficient shapes and component designs compatible with every climate and urban context, for rooftops of varying sizes. In this study, three types of rooftop technologies, namely insulated, green roof, and rooftop greenhouse, are evaluated for energy and thermal performance using computer simulations. Water surface exposure, absorption, and intrusion are the three important factors in the calculation of hygrothermal models that impact energy consumption and building envelope performance; however, a few studies are specifically focused on providing realistic results in multi-dimensional hygrothermal models and the assessment of the impact of moisture in roofing solutions. This paper aims at evaluating the performance of three different roofing technologies through a two-dimensional hygrothermal simulation in software WUFI. To accomplish this, a precise localized microclimate model of a complex urban context on the scale of a neighborhood was employed to evaluate the cooling and heating loads of the buildings, the impact of the water content in the green roof on the thermal behavior of the roof surface, and the feasibility of designing a building with nearly zero cooling needs. A two-story building in the city center of Bologna, Italy is modelled. Simulation results have shown that during the cooling period, the performance of the designed rooftop greenhouse is the most effective by 50% reduction in cooling loads. Besides, the impact of moisture in green roofs has been detected as a negative factor for thermal and energy performance of the building in the Mediterranean climate. The results ultimately highlighted the capability of passively-designed rooftop greenhouses to create a building with nearly zero cooling needs.


2017 ◽  
Vol 42 (2) ◽  
pp. 125-141 ◽  
Author(s):  
Araz Azarnejad ◽  
Ardeshir Mahdavi

The surface properties of building façades have implications for thermal performance of buildings and might also influence outdoor thermal comfort conditions for pedestrians. A surface property, which is frequently used by building engineers and specially architects, is the visual reflectance. In this article, effects of façades’ visual reflectance on thermal aspects of building performance have been investigated in two parts. In the first part, the result of a field study is presented. The study explores the relationship between the visual reflectance of actual building façades and the corresponding surface temperatures. A number of buildings with diverse façade colors were selected. Surface temperatures were measured via infrared thermography. Façades’ visual reflectance was derived via simultaneous measurement of the illuminance on the façades and their luminance. Furthermore, incident solar radiation, ambient air temperature, and relative humidity were measured. The results of the field study display a non-random relationship between the building façades’ visual reflectance and their surface temperatures. The second part of the research involved the deployment of a calibrated simulation tool toward exploring the impact of façades’ visual reflectance on thermal performance of buildings. The results suggest that the magnitude of visual reflectance has little impact on indoor temperature and heating demand in case of façades with external insulation layer but may influence cooling loads in case of non-insulated buildings.


2021 ◽  
Vol 13 (12) ◽  
pp. 6706
Author(s):  
Faezeh Bagheri Moghaddam ◽  
Josep Maria Fort Mir ◽  
Isidro Navarro Delgado ◽  
Ernesto Redondo Dominguez

The aim of this paper is to investigate the thermal performance of vertical gardens by comparing the thermal comfort of bare (glazed) and green façades in the Mediterranean climate. The proposal consists of applying a vegetation layer on a glazed façade that could control solar radiation and reduce indoor air temperatures. This study investigates the thermal performance of green façades of an office building in the Mediterranean climate. For this purpose, the Gas Natural Fenosa Office Building as a case study was simulated, that is located on a site next to the coastline in Barcelona. Dynamic building energy simulation was used to determine and assess indoor thermal conditions and, for this reason, the IES VE as a simulation tool has been utilized. Thermal comfort was assessed through the adaptive comfort approach and results were analyzed and presented in the terms of indoor comfort conditions during occupied hours. As a result, the article shows that applying a green façade as a vegetation layer caused a reduction in the internal and external façade surface temperatures, as well as the indoor air temperature of the workplace. Additionally, enhancing indoor comfort in summer is closely associated with reducing the external surface temperature. In winter, it also protects the exterior surface from the low temperature of the outside, and all of this greatly increases thermal comfort performance.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Rizki A. Mangkuto ◽  
Mochamad Donny Koerniawan ◽  
Sri Rahma Apriliyanthi ◽  
Irma Handayani Lubis ◽  
Atthaillah ◽  
...  

Optimisation of shading devices in buildings is a broadly investigated topic; however, most studies only focus on a single façade orientation, since the observed buildings are typically located in high latitude regions. However, in tropical regions, optimisation of all façade orientations is required due to the relatively high solar radiation and long sunshine duration. While adaptive shading devices are a promising solution, they are not without disadvantages, and as such a combination of adaptive shading devices and a fixed shading device shall be considered. This research therefore aims to design the optimum internal shading devices on four façade orientations of a high-rise office building in a tropical city, considering fixed and adaptive shading design options, and to determine the impact on annual daylight performance using computational modelling and simulation. The simulation is carried out under: (1) fixed design option, focusing on the numbers and width of slats; and (2) adaptive design option, focusing on the slat angle on various conditions. It is found that both sDA300/50% and ASE1000,250 are only influenced by the orientation. Under the fixed design option, the sDA300/50% and ASE1000,250 targets can be achieved only on the north and south façades, and accordingly the adaptive design option shall be implemented on the east and west façades. Overall, this study contributes to knowledge regarding the optimisation of shading devices in high-rise buildings in the tropics, considering the daylight admission from the four cardinal orientations.


Sign in / Sign up

Export Citation Format

Share Document