scholarly journals Effect of Deposition Parameters on Electrochemical Properties of Polypyrrole-Graphene Oxide Films

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 624 ◽  
Author(s):  
Alina Iuliana Pruna ◽  
Nelly Ma. Rosas-Laverde ◽  
David Busquets Mataix

Graphene oxide (GO)-modified polypyrrole (PPy) coatings were obtained by electrochemical methods in the presence of the anionic surfactant, sodium dodecyl sulfate (SDS). The structure, morphology, and electrochemical properties of the coatings were assessed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry at varying scan rates, respectively. The properties of the obtained coatings were analyzed with the GO and PPy loadings and electrodeposition mode. The hybrid coatings obtained galvanostatically showed a coarser appearance than those deposited by cyclic voltammetry CV mode and improved performance, respectively, which was further enhanced by GO and PPy loading. The capacitance enhancement can be attributed to the SDS surfactant that well dispersed the GO sheets, thus allowing the use of lower GO content for improved contribution, while the choice of suitable electrodeposition parameters is highly important for improving the applicability of GO-modified PPy coatings in energy storage applications.

2019 ◽  
Vol 5 (2) ◽  
pp. 18 ◽  
Author(s):  
Johara Al Dream ◽  
Camila Zequine ◽  
K. Siam ◽  
Pawan K. Kahol ◽  
S. R. Mishra ◽  
...  

Graphene is a highly studied material due to its unique electrical, optical, and mechanical properties. Graphene is widely applied in the field of energy such as in batteries, supercapacitors, and solar cells. The properties of graphene can be further improved by making nanocomposites with conducting polymers. In this work, graphene oxide nanoribbons (GONRs) were synthesized by unzipping multiwall carbon nanotubes. Graphene nanoribbons were used to make nanocomposites with polypyrrole for energy storage applications. The synthesized nanocomposites were structurally and electrochemically characterized to understand their structure and electrochemical properties. The electrochemical characterizations of these nanocomposites were carried out using cyclic voltammetry. The specific capacitance of the nanocomposites was observed to decrease with increasing scan rates. The highest specific capacitance of 2066 F/g was observed using cyclic voltammetry for the optimized nanocomposite of GONR and polypyrrole. Our study suggests that the electrochemical properties of graphene or polypyrrole can be improved by making their composites and that they could be successfully used as electrode materials for energy storage applications. This study can also be extended to the self-assembly of other conducting polymers and graphene nanoribbons through a simple route for various other applications.


2008 ◽  
Vol 8 (3) ◽  
pp. 1494-1496 ◽  
Author(s):  
Xu Chun Song ◽  
Yi Fan Zheng ◽  
E. Yang ◽  
Yun Wang

The α-MnO2 spherical assemblies were prepared via a facile hydrothermal approach in the presence of sodium dodecyl sulfate (SDS). The assembled nanostructures were composed of the MnO2 nanorods with 150–200 nm in width and several micrometers in length. The products were characterized by SEM, TEM and XRD. The electrochemical characterization was carried out by cyclic voltammetry, which indicated that the α-MnO2 spherical assemblies were of an excellent electrode material for supercapacitor.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 507 ◽  
Author(s):  
Nelly Maria Rosas-Laverde ◽  
Alina Pruna ◽  
David Busquets-Mataix

Nanostructured polypyrrole coating was applied on carbon paper via simple dip-coating and electrochemical approach. Hybridization with nanocarbon materials (graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs)) and their effect as an anchoring hybrid layer for the growth of polypyrrole towards improving electrochemical properties are studied. The loading of each component and their w/w ratio were evaluated. Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and Raman spectroscopy were employed to characterize the properties of the coatings. The electrochemical properties were investigated by cyclic voltammetry. The results indicated the electrodeposition of polypyrrole is enhanced by the addition of MWCNTs to the GO layer due to the formation of a hierarchical network. The electrochemical performance of the modified electrode was shown to be highly dependent on the employed w/w ratio, reaching a capacitance value of about 40 mF cm−2 for a carbon paper substrate modified with GO:MWCNT in a w/w ratio of 1:2.5 and PPy layer deposited by cyclic voltammetry for 30 cycles. The contribution to total stored charge was found to be primary from the inner capacitance component of about 95.5% contribution.


2012 ◽  
Vol 512-515 ◽  
pp. 944-947 ◽  
Author(s):  
Jia Wei Deng ◽  
Huan Pang ◽  
Shao Mei Wang ◽  
Jiang Shan Zhang

Graphene oxide nanoplate-MnO2composites have been synthesized by oxidizing part of the carbon atoms in the framework of graphene oxide nanoplates at ambient temperature. The composites were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Their microstructures and morphologies have affected their electrochemical properties. Compared with MnO2nanoparticles, the nanocomposite prepared reveals better electrochemical properties as a supercapacitor electrode material.


2020 ◽  
Vol 999 ◽  
pp. 21-27 ◽  
Author(s):  
Yue Zhou ◽  
Qing Hao Yang ◽  
Jie Dong

Nickel-doped manganese dioxide (Ni-MnO2) as electrode materials for supercapacitors were successfully prepared by one-step chemical liquid phase coprecipitation with the different nickel doped proportions. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence (XRF) were used to analyze the micro-structure, morphology and composition. And electrochemical properties were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectrometry (EIS). The results revealed that MnO2 synthesized in this work turned out to be δ-MnO2 of homogeneous dispersion and excellent electrochemical properties. Specific capacitance of 300.85 F/g was achieved for the 2% Ni-doped MnO2 at 2mV/s through cyclic voltammetry, and after 5000 circles the persistence rate of which still remained to 75%, exhibiting a preeminent advantage of stability and reversibility to naked MnO2.


2016 ◽  
Vol 52 (5) ◽  
pp. 946-949 ◽  
Author(s):  
Bendi Ramaraju ◽  
Cheng-Hung Li ◽  
Sengodu Prakash ◽  
Chia-Chun Chen

Cuox–rGO composite was synthesized by sintering a Cu-based metal–organic framework (Cu-MOF) embedded with exfoliated graphene oxide. The obtained material delivers an excellent electrochemical properties with stable cycling performance as an anode material in rechargeable batteries.


2011 ◽  
Vol 347-353 ◽  
pp. 2975-2978
Author(s):  
Xiao Hong Li ◽  
Fei Hu ◽  
Xiang Ping Jiang

Manganese dioxide (MnO2) nanostructures have been synthesized by hydrothermal method. The crystallographic structure, morphology, and electrochemical properties of MnO2 nanoparticles have been measured by XRD, SEM, TEM, and cyclic voltammetry (CV). It is shown that the hydrothermal temperature and reaction time have played an important role on the crystallographic structure and morphology of the MnO2 particles. And the MnO2 particles composed of hollow urchins exhibits a higher specific capacitance of 210 F/g.


2020 ◽  
Vol 16 (4) ◽  
pp. 393-403 ◽  
Author(s):  
Renjini Sadhana ◽  
Pinky Abraham ◽  
Anithakumary Vidyadharan

Introduction: In this study, solar exfoliated graphite oxide modified glassy carbon electrode was used for the anodic oxidation of epinephrine in a phosphate buffer medium at pH7. The modified electrode showed fast response and sensitivity towards Epinephrine Molecule (EP). The electrode was characterized electrochemically through Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Area of the electrode enhanced three times during modification and studies reveal that the oxidation process of EP occurs by an adsorption controlled process involving two electrons. The results showed a detection limit of 0.50 ± 0.01μM with a linear range up to 100 μM. The rate constant calculated for the electron transfer reaction is 1.35 s-1. The electrode was effective for simultaneous detection of EP in the presence of Ascorbic Acid (AA) and Uric Acid (UA) with well-resolved signals. The sensitivity, selectivity and stability of the sensor were also confirmed. Methods: Glassy carbon electrode modified by reduced graphene oxide was used for the detection and quantification of epinephrine using cyclic voltammetry and differential pulse voltammetry. Results: The results showed an enhancement in the electrocatalytic oxidation of epinephrine due to the increase in the effective surface area of the modified electrode. The anodic transfer coefficient, detection limit and electron transfer rate constant of the reaction were also calculated. Conclusion: The paper reports the determination of epinephrine using reduced graphene oxide modified glassy carbon electrode through CV and DPV. The sensor exhibited excellent reproducibility and repeatability for the detection of epinephrine and also its simultaneous detection of ascorbic acid and uric acid, which coexist in the biological system.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27801-27811
Author(s):  
M. Vandana ◽  
Y. S. Nagaraju ◽  
H. Ganesh ◽  
S. Veeresh ◽  
H. Vijeth ◽  
...  

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.


Sign in / Sign up

Export Citation Format

Share Document