scholarly journals Reversible Energy Storage in Layered Copper-Based Coordination Polymers: Unveiling the Influence of the Ligand's Functional Group on Their Electrochemical Properties

Author(s):  
Marco Amores ◽  
Keisuke Wada ◽  
Ken Sakaushi ◽  
Hiroshi Nishihara

Coordination polymers represent a suitable model to study redox mechanisms in materials where both metal cation and ligand undergo electrochemical reactions and are capable to proceed through reversible multielectron-transfer processes with insertion of cation and anion into their open structures. Designing new coordination polymers for electrochemical energy storage with improved performance relays also on the understanding of their structure-properties relationship. Here, we present a family of copper-based coordination polymer with hexafunctionalized benzene ligands forming a kagome-type layered structure, where the in uence of the functional groups in their structure and electrochemical properties is investigated. Their chemical and structural properties have been explored by means of PXRD, and FTIR and Raman spectroscopies, followed by investigation of their electrochemical performance in Li half-cells by CV and galvanostatic cycling techniques. Ex-situ PXRD, Raman, XPS and ToF-SIMS measurements of cycled electrodes have been carried out providing insights into the redox mechanism of these copper-based coordination polymers as positive electrode materials.<br>

2020 ◽  
Author(s):  
Marco Amores ◽  
Keisuke Wada ◽  
Ken Sakaushi ◽  
Hiroshi Nishihara

Coordination polymers represent a suitable model to study redox mechanisms in materials where both metal cation and ligand undergo electrochemical reactions and are capable to proceed through reversible multielectron-transfer processes with insertion of cation and anion into their open structures. Designing new coordination polymers for electrochemical energy storage with improved performance relays also on the understanding of their structure-properties relationship. Here, we present a family of copper-based coordination polymer with hexafunctionalized benzene ligands forming a kagome-type layered structure, where the in uence of the functional groups in their structure and electrochemical properties is investigated. Their chemical and structural properties have been explored by means of PXRD, and FTIR and Raman spectroscopies, followed by investigation of their electrochemical performance in Li half-cells by CV and galvanostatic cycling techniques. Ex-situ PXRD, Raman, XPS and ToF-SIMS measurements of cycled electrodes have been carried out providing insights into the redox mechanism of these copper-based coordination polymers as positive electrode materials.<br>


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 788
Author(s):  
Xin Guan ◽  
Lujun Pan ◽  
Zeng Fan

Lightweight energy storage devices with high mechanical flexibility, superior electrochemical properties and good optical transparency are highly desired for next-generation smart wearable electronics. The development of high-performance flexible and transparent electrodes for supercapacitor applications is thus attracting great attention. In this work, we successfully developed flexible, transparent and highly conductive film electrodes based on a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The PEDOT:PSS film electrodes were prepared via a simple spin-coating approach followed by a post-treatment with a salt solution. After treatment, the film electrodes achieved a high areal specific capacitance (3.92 mF/cm2 at 1 mA/cm2) and long cycling lifetime (capacitance retention >90% after 3000 cycles) with high transmittance (>60% at 550 nm). Owing to their good optoelectronic and electrochemical properties, the as-assembled all-solid-state device for which the PEDOT:PSS film electrodes were utilized as both the active electrode materials and current collectors also exhibited superior energy storage performance over other PEDOT-based flexible and transparent symmetric supercapacitors in the literature. This work provides an effective approach for producing high-performance, flexible and transparent polymer electrodes for supercapacitor applications. The as-obtained polymer film electrodes can also be highly promising for future flexible transparent portable electronics.


RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68334-68344 ◽  
Author(s):  
R. Oraon ◽  
A. De Adhikari ◽  
S. K. Tiwari ◽  
G. C. Nayak

Nanoclay based graphene polyaniline (PANI) hybrid nanocomposites were synthesized by bothin situandex situapproaches and the effect of nanoclay on the energy storage capability was explored.


2019 ◽  
Vol 5 (2) ◽  
pp. 18 ◽  
Author(s):  
Johara Al Dream ◽  
Camila Zequine ◽  
K. Siam ◽  
Pawan K. Kahol ◽  
S. R. Mishra ◽  
...  

Graphene is a highly studied material due to its unique electrical, optical, and mechanical properties. Graphene is widely applied in the field of energy such as in batteries, supercapacitors, and solar cells. The properties of graphene can be further improved by making nanocomposites with conducting polymers. In this work, graphene oxide nanoribbons (GONRs) were synthesized by unzipping multiwall carbon nanotubes. Graphene nanoribbons were used to make nanocomposites with polypyrrole for energy storage applications. The synthesized nanocomposites were structurally and electrochemically characterized to understand their structure and electrochemical properties. The electrochemical characterizations of these nanocomposites were carried out using cyclic voltammetry. The specific capacitance of the nanocomposites was observed to decrease with increasing scan rates. The highest specific capacitance of 2066 F/g was observed using cyclic voltammetry for the optimized nanocomposite of GONR and polypyrrole. Our study suggests that the electrochemical properties of graphene or polypyrrole can be improved by making their composites and that they could be successfully used as electrode materials for energy storage applications. This study can also be extended to the self-assembly of other conducting polymers and graphene nanoribbons through a simple route for various other applications.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2883 ◽  
Author(s):  
Bushra Begum ◽  
Salma Bilal ◽  
Anwar ul Haq Ali Shah ◽  
Philipp Röse

Polybenzopyrrole (Pbp) is an emerging candidate for electrochemical energy conversion and storage. There is a need to develop synthesis strategies for this class of polymers that can help improve its overall properties and make it as suitable for energy storage applications as other well-studied polymers in this substance class, such as polyaniline and polypyrrole. In this study, by synthesizing Pbp in surfactant-supported acidic medium, we were able to show that the physicochemical and electrochemical properties of Pbp-based electrodes are strongly influenced by the respective polymerization conditions. Through appropriate optimization of various reaction parameters, a significant enhancement of the thermal stability (up to 549.9 °C) and the electrochemical properties could be achieved. A maximum specific capacitance of 166.0 ± 2.0 F g−1 with an excellent cycle stability of 87% after 5000 cycles at a current density of 1 A g−1 was achieved. In addition, a particularly high-power density of 2.75 kW kg−1 was obtained for this polybenzopyrrole, having a gravimetric energy density of 17 Wh kg−1. The results show that polybenzopyrroles are suitable candidates to compete with other conducting polymers as electrode materials for next-generation Faradaic supercapacitors. In addition, the results of the current study can also be easily applied to other systems and used for adaptations or new syntheses of advanced hybrid/composite Pbp-based electrode materials.


2016 ◽  
Vol 8 (3) ◽  
pp. 03017-1-03017-7 ◽  
Author(s):  
I. F. Myronyuk ◽  
◽  
V. I. Mandzyuk ◽  
V. M. Sachko ◽  
R. P. Lisovsky ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 624 ◽  
Author(s):  
Alina Iuliana Pruna ◽  
Nelly Ma. Rosas-Laverde ◽  
David Busquets Mataix

Graphene oxide (GO)-modified polypyrrole (PPy) coatings were obtained by electrochemical methods in the presence of the anionic surfactant, sodium dodecyl sulfate (SDS). The structure, morphology, and electrochemical properties of the coatings were assessed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) and cyclic voltammetry at varying scan rates, respectively. The properties of the obtained coatings were analyzed with the GO and PPy loadings and electrodeposition mode. The hybrid coatings obtained galvanostatically showed a coarser appearance than those deposited by cyclic voltammetry CV mode and improved performance, respectively, which was further enhanced by GO and PPy loading. The capacitance enhancement can be attributed to the SDS surfactant that well dispersed the GO sheets, thus allowing the use of lower GO content for improved contribution, while the choice of suitable electrodeposition parameters is highly important for improving the applicability of GO-modified PPy coatings in energy storage applications.


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


Sign in / Sign up

Export Citation Format

Share Document