scholarly journals Anticancer Activity of Cynomorium coccineum

Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.

2019 ◽  
Author(s):  
Jie Sun ◽  
Di Wang ◽  
Yu Zhang ◽  
Qing Mu ◽  
Mei Li ◽  
...  

Abstract Background Compound Kushen Injection (CKI) has been clinically used in China for 15 years to treat various types of solid tumors, including colorectal cancer. Here we examine cell cycle arrest, induced autophagy, and mutant p53 pathways perturbed by CKI in colorectal cancer cells. We and other groups have shown that CKI alters p53 gene expression patterns and suppresses proliferation in colorectal cancer cells. Methods We measured the effect of CKI on cell proliferation, cell cycle progression and autophagy in sw480 and sw620 colorectal cancer cells in vitro, and carcinogenesis and the progression of azoxymethane/dextran sodium sulfate-induced colorectal cancer in ICR mice in vivo. We also used RNA sequencing to analyze mRNA expression altered by CKI, and further validated the expression of mutant p53 and several genes in the cell cycle pathway using reverse transcriptase-quantitative PCR and western blotting. Using network pharmacology (BATMAN-TCM database), we have also predicted the active ingredients in CKI involved in regulating the expression of mutant p53. Results We show evidence that CKI significantly suppressed proliferation and cell cycle progression, and induced autophagy of sw480 and sw620 cells in vitro; it also inhibited the development of inflammatory colorectal cancer in vivo. We also show that the down-regulated expression of mutant p53 and adjustments in several key genes related closely to cell-cycle progression. Furthermore, N-oxysophocarpine, lupenone, and geranylacetone were predicted to be the active ingredients of CKI involved in the down-regulated expression of mutant p53. Conclusion Our results indicate that CKI likely acts as a potential anti-cancer therapeutic agent that targets the cell cycle pathway, suggesting a key role in the development of a novel subsidiary therapeutic approach against mutant p53 in patients with colorectal cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Po-Chih Hsu ◽  
Ching-Feng Cheng ◽  
Po-Chun Hsieh ◽  
Yi-Hsuan Chen ◽  
Chan-Yen Kuo ◽  
...  

Background. Oral cancer belongs to the class of head and neck cancers and can be life threatening if not diagnosed and treated early. Activation of cell death via apoptosis or reactive oxygen species (ROS) accumulation and inhibition of cell cycle progression, migration, and epithelial-to-mesenchymal transition (EMT) may be a good strategy to arrest the development of oral cancer. In this study, we analyzed the possible action of chrysophanol isolated from the rhizomes of Rheum palmatum on the oral cancer cell lines FaDu (human pharynx squamous cell carcinoma) and SAS (human tongue squamous carcinoma) by investigating whether chrysophanol could influence cell death. Method. Cell viability was measured by using the MTT assay. For the detection of apoptosis, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and subG1 population analysis were used. We also examined cell cycle progression and ROS levels by flow cytometry. Additionally, the expression of p53, p21, procaspase 3, cyclin D1, CDK4, cdc2, CDK2, E-cadherin, vimentin, and PCNA was evaluated by western blotting. Conclusion. Chrysophanol has an anticancer effect on FaDu and SAS cell lines. There is an increase in subG1 accumulation, ROS production, and cell cycle G1 arrest after treatment with chrysophanol. On the other hand, chrysophanol inhibited cell migration/metastasis and EMT. We proposed that chrysophanol may be a good candidate compound on oral cancer treatment in the further.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongwoon Jung ◽  
Pavel Kraikivski ◽  
Sajad Shafiekhani ◽  
Scott S. Terhune ◽  
Ranjan K. Dash

AbstractDifferent cancer cell lines can have varying responses to the same perturbations or stressful conditions. Cancer cells that have DNA damage checkpoint-related mutations are often more sensitive to gene perturbations including altered Plk1 and p53 activities than cancer cells without these mutations. The perturbations often induce a cell cycle arrest in the former cancer, whereas they only delay the cell cycle progression in the latter cancer. To study crosstalk between Plk1, p53, and G2/M DNA damage checkpoint leading to differential cell cycle regulations, we developed a computational model by extending our recently developed model of mitotic cell cycle and including these key interactions. We have used the model to analyze the cancer cell cycle progression under various gene perturbations including Plk1-depletion conditions. We also analyzed mutations and perturbations in approximately 1800 different cell lines available in the Cancer Dependency Map and grouped lines by genes that are represented in our model. Our model successfully explained phenotypes of various cancer cell lines under different gene perturbations. Several sensitivity analysis approaches were used to identify the range of key parameter values that lead to the cell cycle arrest in cancer cells. Our resulting model can be used to predict the effect of potential treatments targeting key mitotic and DNA damage checkpoint regulators on cell cycle progression of different types of cancer cells.


3 Biotech ◽  
2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Ipsita Pujari ◽  
Abitha Thomas ◽  
Jinsu Thomas ◽  
Niharika Jhawar ◽  
Kanive Parashiva Guruprasad ◽  
...  

AbstractMoscatilin (stilbenoid) is a plant-derived anticancer compound, and it has mostly been isolated from threatened wild Dendrobium species. The present study attempts to evaluate the cytotoxicity of Moscatilin on several cancer cell lines through MTT assay. Additionally, it also aims towards estimating and comparing the radiosensitivity, cell-cycle progression, and apoptotic/necrotic effect induced by Moscatilin on different cell lines. The effects of Moscatilin was compared with another significant stilbenoid anticancer agent, Resveratrol (a structural analog of Moscatilin), whose presence has also been reported in Dendrobiums. Considering the threatened nature of this genus, crude extracts of a tropical and epiphytic Dendrobium species, viz., Dendrobium ovatum, prepared from in vitro seedlings were also tested towards cytotoxicity and radiosensitization efficacy. Moscatilin functioned as an effective radiosensitizer at 5 µg/ml along with 1 Gy X-ray and 200 J/m2 UV-C radiations. It was also able to perturb cell cycle both at replicative and post-replicative phases with the aforementioned combination. Moscatilin, in unison with radiation, triggered immunogenic death specifically on cancer cells starting from Pyroptosis, terminating in Necroptosis. Moscatilin, when used singly, could evoke immunogenic cell death. Analyses of Damage-Associated Molecular Patterns released during radiation and Moscatilin treatment would aid in ascertaining the mode of cell death. Moscatilin is a potential radiosensitizer and must be tested for preclinical and clinical trials to combat cancer.


2012 ◽  
Vol 13 (10) ◽  
pp. 5131-5136 ◽  
Author(s):  
Aied M. Alabsi ◽  
Rola Ali ◽  
Abdul Manaf Ali ◽  
Sami Abdo Radman Al-Dubai ◽  
Hazlan Harun ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3946-3946
Author(s):  
Liping Li ◽  
Katharina Hayer ◽  
Lingling Xian ◽  
Li Luo ◽  
Leslie Cope ◽  
...  

Introduction: Acute B-cell lymphoblastic leukemia (B-ALL) is the most common form of childhood leukemia and the leading cause of death in children with cancer. While therapy is often curative, about 10-15% of children will relapse with recurrent disease and abysmal outcomes. Actionable mechanisms that mediate relapse remain largely unknown. The gene encoding the High Mobility Group A1(HMGA1) chromatin regulator is overexpressed in diverse malignancies where high levels portend poor outcomes. In murine models, we discovered thatHmga1 overexpression is sufficient for clonal expansion and progression to aggressive acute lymphoid leukemia (Cancer Res 2008,68:10121, 2018,78:1890; Nature Comm 2017,8:15008). Further, HMGA1 is overexpressed in pediatric B-ALL (pB-ALL) blasts with highest levels in children who relapse early compared to those who achieve chronic remissions. Together, these findings suggest that HMGA1 is required for leukemogenesis and may foster relapse in B-ALL. We therefore sought to: 1) test the hypothesis that HMGA1 is a key epigenetic regulator required for leukemogenesis and relapse in pB-ALL, and, 2) elucidate targetable mechanisms mediated by HMGA1 in leukemogenesis. Methods: We silenced HMGA1 via lentiviral delivery of short hairpin RNAs targeting 2 different sequences in cell lines derived from relapsed pB-ALL (REH, 697). REH cells harbor the TEL-AML1 fusion; 697 cells express BCL2, BCL3, and cMYC. Next, we assessed leukemogenic phenotypes in vitro (proliferation, cell cycle progression, apoptosis, and clonogenicity) and leukemogenesis invivo. To dissect molecular mechanisms underlying HMGA1, we performed RNA-Seq and applied in silico pathway analysis. Results: There is abundant HMGA1 mRNA and protein in both pB-ALL cell lines and HMGA1 was effectively silenced by short hairpin RNA. Further, silencing HMGA1 dramatically halts proliferation in both cell lines, leading to a decrease in cells in S phase with a concurrent increase in G0/S1. Apoptosis also increased by 5-10% after HMGA1 silencing based on flow cytometry for Annexin V. In colony forming assays, silencing HMGA1 impaired clonogenicity in both pB-ALL cell lines. To assess HMGA1 function in leukemogenesis in vivo, we implanted control pB-ALL cells (transduced with control lentivirus) or those with HMGA1 silencing via tail vein injection into immunosuppressed mice (NOD/SCID/IL2 receptor γ). All mice receiving control REH cells succumbed to leukemia with a median survival of only 29 days. At the time of death, mice had marked splenomegaly along with leukemic cells circulating in the peripheral blood and infiltrating both the spleen and bone marrow. In contrast, mice injected with REH cells with HMGA1 silencing survived for >40 days (P<0.001) and had a significant decrease in tumor burden in the peripheral blood, spleen, and bone marrow. Similar results were obtained with 697 cells, although this model was more fulminant with control mice surviving for a median of only 17 days. To determine whether the leukemic blasts found in mice injected with ALL cells after HMGA1 silencing represented a clone that expanded because it escaped HMGA1 silencing, we assessed HMGA1 levels and found that cells capable of establishing leukemia had high HMGA1 expression, with levels similar to those observed in control cells without HMGA1 silencing. RNA-Seq analyses from REH and 697 cell lines with and without HMGA1 silencing revealed that HMGA1 up-regulates transcriptional networks involved in RAS/MAPK/ERK signaling while repressing the IDH1 metabolic gene, the latter of which functions in DNA and histone methylation. Studies are currently underway to identify effective agents to target HMGA1 pathways. Conclusions: Silencing HMGA1 dramatically disrupts leukemogenic phenotypes in vitro and prevents the development of leukemia in mice. Mechanistically, RNA-Seq analyses revealed that HMGA amplifies transcriptional networks involved cell cycle progression and epigenetic modifications. Our findings highlight the critical role for HMGA1 as a molecular switch required for leukemic transformation in pB-ALL and a rational therapeutic target that may be particularly relevant for relapsed B-ALL. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 9 (6) ◽  
pp. 1449-1463 ◽  
Author(s):  
Gian Maria Fimia ◽  
Vanesa Gottifredi ◽  
Barbara Bellei ◽  
Maria Rosaria Ricciardi ◽  
Agostino Tafuri ◽  
...  

It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor β or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G00arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.


2002 ◽  
Vol 13 (9) ◽  
pp. 3178-3191 ◽  
Author(s):  
Smita Abbi ◽  
Hiroki Ueda ◽  
Chuanhai Zheng ◽  
Lee Ann Cooper ◽  
Jihe Zhao ◽  
...  

Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-l-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.


Sign in / Sign up

Export Citation Format

Share Document