scholarly journals STAT3 and STAT5 Activation in Solid Cancers

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1428 ◽  
Author(s):  
Sebastian Igelmann ◽  
Heidi Neubauer ◽  
Gerardo Ferbeyre

The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.

Author(s):  
Sebastian Igelmann ◽  
Heidi A. Neubauer ◽  
Gerardo Ferbeyre

The Signal Transducer and Activator of Transcription (STAT)3 and 5 are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association to survival in cancer patients. The molecular mechanisms that underpins the oncogenic activity of STAT3/5 signaling includes the regulation of genes that control cell cycle, cell death, inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling including the p19ARF/p53 pathway, tyrosine phosphatases, suppressor of cytokine signaling 1 and 3, the sumo ligase PIAS3, the E3 ubiquitin ligase TMF/ARA160 and the miRNAs miR-124 and miR-1181. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated to STAT3/5 signaling explaining their context dependent association to tumor progression both in human cancers and animal models.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1032-1032
Author(s):  
Maritza Lienlaf ◽  
Patricio Perez-Villarroel ◽  
Fengdong Cheng ◽  
Calvin K. Lee ◽  
Jorge Canales ◽  
...  

Abstract Histone deacetylases (HDACs), originally discovered as histone modifiers are now proposed as important regulators of non-chromatin related processes, including the regulation of cellular pathways involved in the production of anti- and pro-inflammatory cytokines and the subsequent function of antigen-presenting cells (APCs). We have recently identified HDAC6 as a positive regulatory factor in the production of IL-10. However, the participation of this HDAC in other immune related cellular processes remains unknown. In this work we present evidence of the important role of HDAC6 in the modulation of the JAK/STAT pathway through the IL-6 regulation. We generated knockdown cell lines of HDAC6 (HDAC6KD) and non-target (NT) cells as a control in RAW264.7 murine macrophages using lentiviral shRNA. Two HADC6KD and two NT cell lines were treated with LPS or were left untreated and then analyzed by microarray. In HDAC6KD cells we found 1542 genes were down-regulated and 775 up-regulated in HDAC6KD cells. Their ontology distribution revealed significant changes in immune-related and apoptosis/cell cycle control genes. Importantly, we observed that most STAT3 and SP1 target genes were down regulated in HDAC6KD cells, suggesting the participation of HDAC6 in the regulation of these two transcription factors. Further analysis evidenced that the phosphorylation of STAT3 and the acetylation of Sp1 were diminished in HDAC6KD cells when compared against control cells. Chromatin immuneprecipitacion (CHIP) assays indicate that this particular effect of abrogation of HDAC6 involved histone modifications at the IL-6 promoter level, and more importantly, the recruitment of STAT3 and Sp1 to the IL-6 promoter was abrogated. Then, we analyzed the relevance of these findings by studying the tolerogenic JAK/STAT signaling pathway, which is known to be activated by IL-6 and critical in the final outcome of APCs in response to stimuli. Our observations included a complete abrogation in the phosphorylation of JAK2 and STAT3 proteins in HDAC6KD cells in response to LPS, which was reverted when these cells were treated with exogenous IL-6. Our final results demonstrate a critical role of HDAC6 in the modulation of IL-6 and the potential role of HDAC6 in the regulation of the JAK/STAT3 pathway. In addition HDAC6 is a regulator of SP1 and STAT3 target genes. These findings provide insight into the molecular mechanisms controlling the immunogenicity of APCs, supporting the use of HDAC6 inhibitors to enhance immune activation, and positioning HDAC6 as a potential therapeutic target. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (9) ◽  
pp. 2698-2712 ◽  
Author(s):  
Ryan M. Carr ◽  
Paola A. Romecin Duran ◽  
Ezequiel J. Tolosa ◽  
Chenchao Ma ◽  
Abdul M. Oseini ◽  
...  

The expression of the extracellular sulfatase SULF2 has been associated with increased hepatocellular carcinoma (HCC) growth and poor patient survival. However, the molecular mechanisms underlying SULF2-associated tumor growth remain unclear. To address this gap, here we developed a transgenic mouse overexpressing Sulf2 in hepatocytes under the control of the transthyretin promoter. In this model, Sulf2 overexpression potentiated diethylnitrosamine-induced HCC. Further analysis indicated that the transcription factor GLI family zinc finger 1 (GLI1) mediates Sulf2 expression during HCC development. A cross of the Sulf2-overexpressing with Gli1-knockout mice revealed that Gli1 inactivation impairs SULF2-induced HCC. Transcriptomic analysis revealed that Sulf2 overexpression is associated with signal transducer and activator of transcription 3 (STAT3)-specific gene signatures. Interestingly, the Gli1 knockout abrogated SULF2-mediated induction of several STAT3 target genes, including suppressor of cytokine signaling 2/3 (Socs2/3); Pim-1 proto-oncogene, Ser/Thr kinase (Pim1); and Fms-related tyrosine kinase 4 (Flt4). Human orthologs were similarly regulated by SULF2, dependent on intact GLI1 and STAT3 functions in HCC cells. SULF2 overexpression promoted a GLI1-STAT3 interaction and increased GLI1 and STAT3 enrichment at the promoters of their target genes. Interestingly, the SULF2 overexpression resulted in GLI1 enrichment at select STAT3 consensus sites, and vice versa. siRNA-mediated STAT3 or GLI1 knockdown reduced promoter binding of GLI1 and STAT3, respectively. Finally, chromatin-capture PCR confirmed long-range co-regulation of SOCS2 and FLT3 through changes in promoter conformation. These findings define a mechanism whereby SULF2 drives HCC by stimulating formation of a GLI1-STAT3 transcriptional complex.


2021 ◽  
Vol 11 ◽  
Author(s):  
An Xu ◽  
Mo-Fan Huang ◽  
Dandan Zhu ◽  
Julian A. Gingold ◽  
Danielle A. Bazer ◽  
...  

Osteosarcoma is one of the most frequent common primary malignant tumors in childhood and adolescence. Long non-coding RNAs (lncRNAs) have been reported to regulate the initiation and progression of tumors. However, the exact molecular mechanisms involving lncRNA in osteosarcomagenesis remain largely unknown. Li-Fraumeni syndrome (LFS) is a familial cancer syndrome caused by germline p53 mutation. We investigated the tumor suppressor function of lncRNA H19 in LFS-associated osteosarcoma. Analyzing H19-induced transcriptome alterations in LFS induced pluripotent stem cell (iPSC)-derived osteoblasts, we unexpectedly discovered a large group of snoRNAs whose expression was significantly affected by H19. We identified SNORA7A among the H19-suppressed snoRNAs. SNORA7A restoration impairs H19-mediated osteogenesis and tumor suppression, indicating an oncogenic role of SNORA7A. TCGA analysis indicated that SNORA7A expression is associated with activation of oncogenic signaling and poor survival in cancer patients. Using an optimized streptavidin-binding RNA aptamer designed from H19 lncRNA, we revealed that H19-tethered protein complexes include proteins critical for DNA damage response and repair, confirming H19's tumor suppressor role. In summary, our findings demonstrate a critical role of H19-modulated SNORA7A expression in LFS-associated osteosarcomas.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Author(s):  
Hongsheng Wang ◽  
Wanpeng Cui ◽  
Wenbing Chen ◽  
Fang Liu ◽  
Zhaoqi Dong ◽  
...  

AbstractDopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Minjie Deng ◽  
Yabing Cao ◽  
Zhenli Zhao ◽  
Lu Yang ◽  
Yanfang Zhang ◽  
...  

Understanding the role of miRNAs in regulating the molecular mechanisms responsive to drought stress was studied in Paulownia “yuza 1.” Two small RNA libraries and two degradome libraries were, respectively, constructed and sequenced in order to detect miRNAs and their target genes associated with drought stress. A total of 107 miRNAs and 42 putative target genes were identified in this study. Among them, 77 miRNAs were differentially expressed between drought-treated Paulownia “yuza 1” and the control (60 downregulated and 17 upregulated). The predicted target genes were annotated using the GO, KEGG, and Nr databases. According to the functional classification of the target genes, Paulownia “yuza 1” may respond to drought stress via plant hormone signal transduction, photosynthesis, and osmotic adjustment. Furthermore, the expression levels of seven miRNAs (ptf-miR157b, ptf-miR159b, ptf-miR398a, ptf-miR9726a, ptf-M2153, ptf-M2218, and ptf-M24a) and their corresponding target genes were validated by quantitative real-time PCR. The results provide relevant information for understanding the molecular mechanism of Paulownia resistance to drought and reference data for researching drought resistance of other trees.


2011 ◽  
Vol 301 (3) ◽  
pp. H903-H911 ◽  
Author(s):  
Kanchana Karuppiah ◽  
Lawrence J. Druhan ◽  
Chun-an Chen ◽  
Travis Smith ◽  
Jay L. Zweier ◽  
...  

In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. In the absence of the requisite eNOS cofactor tetrahydrobiopterin (BH4), NADPH oxidation is uncoupled from NO generation, leading to the production of superoxide. Although this phenomenon is apparent with purified enzyme, cellular studies suggest that formation of the BH4 oxidation product, dihydrobiopterin, is the molecular trigger for eNOS uncoupling rather than BH4 depletion alone. In the current study, we investigated the effects of both BH4 depletion and oxidation on eNOS-derived superoxide production in endothelial cells in an attempt to elucidate the molecular mechanisms regulating eNOS oxidase activity. Results demonstrated that pharmacological depletion of endothelial BH4 does not result in eNOS oxidase activity, whereas BH4 oxidation gave rise to significant eNOS-oxidase activity. These findings suggest that the endothelium possesses regulatory mechanisms, which prevent eNOS oxidase activity from pterin-free eNOS. Using a combination of gene silencing and pharmacological approaches, we demonstrate that eNOS-caveolin-1 association is increased under conditions of reduced pterin bioavailability and that this sequestration serves to suppress eNOS uncoupling. Using small interfering RNA approaches, we demonstrate that caveolin-1 gene silencing increases eNOS oxidase activity to 85% of that observed under conditions of BH4 oxidation. Moreover, when caveolin-1 silencing was combined with a pharmacological inhibitor of AKT, BH4 depletion increased eNOS-derived superoxide to 165% of that observed with BH4 oxidation. This study identifies a critical role of caveolin-1 in the regulation of eNOS uncoupling and provides new insight into the mechanisms through which disease-associated changes in caveolin-1 expression may contribute to endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document