scholarly journals CREPT Promotes Melanoma Progression Through Accelerated Proliferation and Enhanced Migration by RhoA-Mediated Actin Filaments and Focal Adhesion Formation

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Hui Liu ◽  
Ann L. B. Seynhaeve ◽  
Rutger W. W. Brouwer ◽  
Wilfred F. J. van IJcken ◽  
Liu Yang ◽  
...  

Melanoma is one of the most aggressive cancers, and patients with distant metastases have dire outcomes. We observed previously that melanoma progression is driven by a high migratory potential of melanoma cells, which survive and proliferate under harsh environmental conditions. In this study, we report that CREPT (cell-cycle related and expression-elevated protein in tumor), an oncoprotein highly expressed in other cancers, is overexpressed in melanoma cells but not melanocytes. Overexpression of CREPT stimulates cell proliferation, migration, and invasion in several melanoma cell lines. Further, we show that CREPT enhances melanoma progression through upregulating and activating Ras homolog family member A (RhoA)-induced actin organization and focal adhesion assembly. Our study reveals a novel role of CREPT in promoting melanoma progression. Targeting CREPT may be a promising strategy for melanoma treatment.

2020 ◽  
Vol 21 (8) ◽  
pp. 2746 ◽  
Author(s):  
Natalia Malek ◽  
Ewa Mrówczyńska ◽  
Aleksandra Michrowska ◽  
Ewa Mazurkiewicz ◽  
Iuliia Pavlyk ◽  
...  

Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either β actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of β and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than β actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells’ FA formation and motility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natalia Malek ◽  
Aleksandra Michrowska ◽  
Ewa Mazurkiewicz ◽  
Ewa Mrówczyńska ◽  
Paweł Mackiewicz ◽  
...  

AbstractWe have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups’ divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Xiaoqian Fang ◽  
Dong H Kim ◽  
Teresa Santiago-Sim

Introduction: An intracranial aneurysm (IA) is a weak spot in cerebral blood vessel wall that can lead to its abnormal bulging. Previously, we reported that mutations in THSD1 , encoding thrombospondin type-1 domain-containing protein 1, are associated with IA in a subset of patients. THSD1 is a transmembrane molecule with a thrombospondin type-1 repeat (TSR). Proteins with TSR domain have been implicated in a variety of processes including regulation of matrix organization, cell adhesion and migration. We have shown that in mouse brain Thsd1 is expressed in endothelial cells. Hypothesis: THSD1 plays an important role in maintaining the integrity of the endothelium by promoting adhesion of endothelial cells to the underlying basement membrane. Methods: Human umbilical vein endothelial cells are used to investigate the role of THSD1 in vitro . THSD1 expression was knocked-down by RNA interference. Cell adhesion assay was done on collagen I-coated plates and focal adhesion formation was visualized using immunofluorescence by paxillin and phosphorylated focal adhesion kinase (pFAK) staining. THSD1 re-expression is accomplished by transfection with a pCR3.1-THSD1-encoding plasmid. Results: Knockdown of THSD1 caused striking change in cell morphology and size. Compared to control siRNA-treated cells that exhibited typical cobblestone morphology, THSD1 knockdown cells were narrow and elongated, and were significantly smaller ( p <0.01). Cell adherence to collagen I-coated plates was also attenuated in THSD1 knockdown cells ( p <0.01). Consistent with this finding is the observation that the number and size of focal adhesions, based on paxillin and pFAK staining, were significantly reduced after THSD1 knockdown ( p <0.01). These defects in cell adhesion and focal adhesion formation were rescued by re-expression of wild type THSD1 ( p <0.05). In contrast, initial studies indicate that expression of mutated versions of THSD1 as seen in human patients (L5F, R450*, E466G, P639L) could not restore cell adhesion and focal adhesion formation to wild type levels. Conclusions: Our studies provide evidence for a role of THSD1 and THSD1 mutations in endothelial cell adhesion and suggest a possible mechanism underlying THSD1 -mediated aneurysm disease.


Sign in / Sign up

Export Citation Format

Share Document