accelerated proliferation
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 3)

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1553
Author(s):  
Abdelhakim Bouyahya ◽  
Naoual El Menyiy ◽  
Loubna Oumeslakht ◽  
Aicha El Allam ◽  
Abdelaali Balahbib ◽  
...  

ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.


2021 ◽  
Vol 22 (18) ◽  
pp. 10096
Author(s):  
Marco Antonio Lacerda-Abreu ◽  
Thais Russo-Abrahão ◽  
Nathália Rocco-Machado ◽  
Daniela Cosentino-Gomes ◽  
Claudia Fernanda Dick ◽  
...  

According to the growth rate hypothesis (GRH), tumour cells have high inorganic phosphate (Pi) demands due to accelerated proliferation. Compared to healthy individuals, cancer patients present with a nearly 2.5-fold higher Pi serum concentration. In this work, we show that an increasing concentration of Pi had the opposite effect on Pi-transporters only in MDA-MB-231 when compared to other breast cell lines: MCF-7 or MCF10-A (non-tumoural breast cell line). Here, we show for the first time that high extracellular Pi concentration mediates ROS production in TNBC (MDA-MB-231). After a short-time exposure (1 h), Pi hyperpolarizes the mitochondrial membrane, increases mitochondrial ROS generation, impairs oxygen (O2) consumption and increases PKC activity. However, after 24 h Pi-exposure, the source of H2O2 seems to shift from mitochondria to an NADPH oxidase enzyme (NOX), through activation of PKC by H2O2. Exogenous-added H2O2 modulated Pi-transporters the same way as extracellular high Pi, which could be reversed by the addition of the antioxidant N-acetylcysteine (NAC). NAC was also able to abolish Pi-induced Epithelial-mesenchymal transition (EMT), migration and adhesion of MDA-MB-231. We believe that Pi transporters support part of the energy required for the metastatic processes stimulated by Pi and trigger Pi-induced H2O2 production as a signalling response to promote cell migration and adhesion.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 141-157
Author(s):  
Bahare Zarin ◽  
Laleh Rafiee ◽  
Parnaz Daneshpajouhnejad ◽  
Shaghayegh Haghjooy Javanmard

Cancers evolve as a result of the accelerated proliferation of cancer cells in a complicated, enriched, and active microenvironment. Tumor microenvironment (TME) components are the master regulators of any step of cancer development. The tumor microenvironment is composed of many cellular and noncellular components that contribute to the evolution of cancer cells. Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the TME that implicate in tumor progression and metastasis dissemination through secretion of oncogenic factors which are carried to the secondary metastatic sites through exosomes. In this review, we aimed to assess the role of CAF-derived exosomes in TME construction and pre-metastatic niche formation in different cancers of the digestive system in order to better understand some important mechanisms of metastasis and provide possible targets for clinical intervention. This review article is divided into two thematic parts explaining the general mechanisms of pre-metastatic niche formation and metastasis and the role of CAF-derived exosomes in different digestive system cancers including colorectal, gastric, esophageal, pancreatic, and liver cancers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jinrong Zeng ◽  
Yue Zhang ◽  
Hanyi Zhang ◽  
Yuezhong Zhang ◽  
Lihua Gao ◽  
...  

BackgroundKeratinocytes of psoriasis have anti-apoptotic properties including delayed apoptosis process, accelerated proliferation metabolism and postponed differentiation process. However, the specific mechanism leading to the abnormal biological behavior of keratinocytes remains unclear.ObjectivesWe investigated the role of increased RPL22 expression in regulating the abnormal biological behavior of keratinocytes and the mechanism of regulation of RPL22 expression in skin lesions of psoriatic patients.MethodsWe examined clinical samples and utilized cytokine-induced cell and IMQ-treated mouse models. We determined the expression and functions of RPL22 in vitro and in vivo.ResultsWe showed that RPL22 expression was significantly increased in the skin lesions of psoriasis patients and IMQ-treated psoriatic-like mice. Such increased expression is attributed to hyperacetylation of histone H3K27 in the promoter region of RPL22. Interestingly, overexpression of RPL22 enhanced keratinocyte proliferation by increasing cyclinD1 expression and accelerated CD4+T cells recruitment via upregulating CXCL10 expression. Finally, we demonstrated that RPL22 overexpression promoted psoriasiform phenotypes in IMQ-induced mouse skins.ConclusionsThese findings suggested that RPL22 regulates keratinocytes abnormal biological behavior and contributes to the development of psoriatic phenotypes. Thus, RPL22 might be a novel potential molecular target for treatment of psoriasis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junko Okano ◽  
Yuki Nakae ◽  
Takahiko Nakagawa ◽  
Miwako Katagi ◽  
Tomoya Terashima ◽  
...  

AbstractExposure to moderate doses of ionizing radiation (IR), which is sufficient for causing skin injury, can occur during radiation therapy as well as in radiation accidents. Radiation-induced skin injury occasionally recovers, although its underlying mechanism remains unclear. Moderate-dose IR is frequently utilized for bone marrow transplantation in mice; therefore, this mouse model can help understand the mechanism. We had previously reported that bone marrow-derived cells (BMDCs) migrate to the epidermis-dermis junction in response to IR, although their role remains unknown. Here, we investigated the role of BMDCs in radiation-induced skin injury in BMT mice and observed that BMDCs contributed to skin recovery after IR-induced barrier dysfunction. One of the important mechanisms involved the action of CCL17 secreted by BMDCs on irradiated basal cells, leading to accelerated proliferation and recovery of apoptosis caused by IR. Our findings suggest that BMDCs are key players in IR-induced skin injury recovery.


2020 ◽  
Vol 65 (4) ◽  
Author(s):  
Aleksandra Kosianova ◽  
Vladlena Tiasto ◽  
Margarita Yatsunskaya ◽  
Yuri Khotimchenko ◽  
Alexander Kagansky

The etiology and pathogenesis of malignant tumor growth are associated with impaired gene expression, leading to accelerated proliferation, evasion of apoptosis, and metabolic deregulations with abnormal blood supply and innervation. Currently, hundreds of tumor suppressor genes and proto-oncogenes are known. Mutations, epigenetic alterations, exposure to viruses, and other environmental factors can cause pathological changes in gene expression. The key mechanisms of carcinogenesis are now considered to be linked to epigenetic events. A better understanding of epigenetic targets and pathways is needed to develop new strategies in antitumor chemotherapy. The majority of modern cancer drugs were taken from nature, yet only a small fraction of natural molecular diversity has been explored to date. Therefore, there is great interest in identifying new natural molecules for modulating gene expression by rewiring epigenetic pathways. This review is focused on examples of known natural molecules available to biomedicine, especially ones capable of modulating epigenetic landscapes and therefore relevant for cancer prevention and aging.


2020 ◽  
Vol 6 (2) ◽  
pp. 59-78
Author(s):  
Serhiy Danylenko ◽  
Iryna Rodina

Drawing from the examples of newly formed and former democracies, the article examines the directions which the transformation of this political concept has taken in context of the expansion of the public sphere and changes in how the democratic process is implemented. Attention is drawn to how the transition of the forefront of political life from traditional centers of its “distribution”- governments, parliaments, and municipal authorities, to the “fatherland” of the public sphere and media of varying quality has become one of the reasons for the accelerated proliferation of politics of the populist variety. The rise of media in Ukraine, where it falls under complete ownership of centers of oligarchy, provides grounds for mentioning a special type of “oligarchic democracy”, which serendipitously exploits the opportunities offered by populism. At the same time, the examples of democratic crises in other nations have become widespread enough, so that they encourage casting doubt on crucial democratic processes, including elections: electoral democracy has formally taken place, although it hasn’t fulfilled its essential function of including the citizenry in making key social decisions. Researchers assert that media is not the only source that breathes life into populist politics as a means to seize power. This carries the threat of destroying the very institutions through which the democratic form of government is realized. Transitional democracies are also subjected to the erosion of populism through problems with asserting the supremacy of law and difficulties with establishing liberal market economics, which should have been synchronized with their political transformation. Authors refer to the fact, that populism is a problem shared by governments with diverse histories of democratic life. Behind democracy always lurks the threat of false self-rule, which can lead to the rise of new authoritarian regimes under the guise of populist conservative declarations and national protectionism. Russia could become an example of this, after its wholly democratic process of voting on amendments to its national constitution, which is expected during 2020. Controversy in equal or greater measure has also surrounded the future of Great Britain after Brexit.


2020 ◽  
Vol 21 (23) ◽  
pp. 9221
Author(s):  
Tomas Koltai

The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the “cancer problem”? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article’s goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.


2020 ◽  
Vol 21 (19) ◽  
pp. 7092
Author(s):  
Sang Eon Park ◽  
Hyeongseop Kim ◽  
Soojin Kwon ◽  
Suk-joo Choi ◽  
Soo-young Oh ◽  
...  

Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells’ niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton’s jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.


2020 ◽  
Vol 93 (1112) ◽  
pp. 20190250
Author(s):  
Nuradh Joseph ◽  
Norman F. Kirkby ◽  
Peter J Hoskin ◽  
Catharine M L West ◽  
Ananya Choudhury ◽  
...  

Objective: As a fractionated course of radiotherapy proceeds tumour shrinkage leads to resolution of hypoxia and the initiation of accelerated proliferation of radioresistant cancer cells with better repair capacity. We hypothesise that, in tumours with significant hypoxia, improved tumour control could be achieved with biphasic fractionation schedules that either use acceleration after 3–4 weeks of conventional radiotherapy or deliver a higher proportional dose towards the end of a course of treatment. We conducted a modelling study based on the concept of biological effective dose (BED) comparing such novel regimens with conventional fractionation. Methods: The comparator conventional fractionation schedule 70 Gy in 35 fractions delivered over 7 weeks was tested against the following novel regimens, both of which were designed to be isoeffective in terms of late normal tissue toxicity. 40 Gy in 20 fractions over 4 weeks followed by 22.32 Gy in 6 consecutive daily fractions (delayed acceleration) 30.4 Gy in 27 fractions over 4 weeks followed by 40 Gy in 15 fractions over 3 weeks (temporal dose redistribution) The delayed acceleration regimen is exactly identical to that of the comparator schedule over the first 28 days and the BED gains with the novel schedule are achieved during the second phase of treatment when reoxygenation is complete. For the temporal redistribution regimen, it was assumed that the reoxygenation fraction progressively increases during the first 4 weeks of treatment and an iterative approach was used to calculate the final tumour BED for varying hypoxic fractions. Results: Novel fractionation with delayed acceleration or temporal fractionation results in tumour BED gains equivalent to 3.5–8 Gy when delivered in 2 Gy fractions. Conclusion: In hypoxic tumours, novel fractionation strategies result in significantly higher tumour BED in comparison to conventional fractionation. Advances in knowledge: We demonstrate that novel biphasic fractionation regimens could overcome the effects of tumour hypoxia resulting in biological dose escalation.


Sign in / Sign up

Export Citation Format

Share Document