scholarly journals Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1125
Author(s):  
Sangryong Park ◽  
Ho-Yong Lee ◽  
Jayoung Kim ◽  
Hansol Park ◽  
Young Seok Ju ◽  
...  

Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.

2020 ◽  
Author(s):  
Sangryoung Park ◽  
Ho-Yong Lee ◽  
Hansol Park ◽  
Young Seok Ju ◽  
Jayoung Kim ◽  
...  

AbstractEnhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the PLK1-mediated suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. We also revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. Our findings highlight the importance of CCM1-DDX5-PLK1-YAP/TAZ signaling in the metastasis of prostate cancer cells.Statement of SignificanceOur analysis of CCM1 expression and function represents a candidate predictive biomarker for prostate cancer metastasis and provides an evidence that abnormality of CCM1 can be pathogenic in prostate cancer. Importantly, CCM1 regulation of metastasis progression appears to a common molecular event in metastatic prostate cancer cells arising in disparate genetic backgrounds.


2018 ◽  
Vol 55 ◽  
pp. S11-S12 ◽  
Author(s):  
P. Oluseyi Olalekan Olaniyi ◽  
H. Whiteland ◽  
U.K. Shah ◽  
O. Bodger ◽  
J. Verma ◽  
...  

2005 ◽  
Vol 12 (4) ◽  
pp. 805-822 ◽  
Author(s):  
Suresh Veeramani ◽  
Ta-Chun Yuan ◽  
Siu-Ju Chen ◽  
Fen-Fen Lin ◽  
Juliette E Petersen ◽  
...  

Human prostatic acid phosphatase (PAcP) was used as a valuable surrogate marker for monitoring prostate cancer prior to the availability of prostate-specific antigen (PSA). Even though the level of PAcP is increased in the circulation of prostate cancer patients, its intracellular level and activity are greatly diminished in prostate cancer cells. Recent advances in understanding the function of the cellular form of PAcP (cPAcP) have shed some light on its role in prostate carcinogenesis, which may have potential applications for prostate cancer therapy. It is now evident that cPAcP functions as a neutral protein tyrosine phosphatase (PTP) in prostate cancer cells and dephosphorylates HER-2/ErbB-2/Neu (HER-2: human epidermal growth factor receptor-2) at the phosphotyrosine (p-Tyr) residues. Dephosphorylation of HER-2 at its p-Tyr residues results in the down-regulation of its specific activity, which leads to decreases in growth and tumorigenicity of those cancer cells. Conversely, decreased cPAcP expression correlates with hyperphosphorylation of HER-2 at tyrosine residues and activation of downstream extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling, which results in prostate cancer progression as well as androgen-independent growth of prostate cancer cells. These in vitro results on the effect of cPAcP on androgen-independent growth of prostate cancer cells corroborate the clinical findings that cPAcP level is greatly decreased in advanced prostate cancer and provide insights into one of the molecular mechanisms involved in prostate cancer progression. Results from experiments using xenograft animal models further indicate a novel role of cPAcP as a tumor suppressor. Future studies are warranted to clarify the use of cPAcP as a therapeutic agent in human prostate cancer patients.


Oncogene ◽  
2003 ◽  
Vol 22 (19) ◽  
pp. 2920-2925 ◽  
Author(s):  
Josien K Oosterhoff ◽  
Fred Penninkhof ◽  
Albert O Brinkmann ◽  
J Anton Grootegoed ◽  
Leen J Blok

2021 ◽  
Vol 10 ◽  
Author(s):  
Lu Jin ◽  
Yibin Zhou ◽  
Guangqiang Chen ◽  
Guangcheng Dai ◽  
Kai Fu ◽  
...  

Trophinin-associated protein (TROAP) has been shown to be overexpressed and promotes tumor progression in some tumors. We performed this study to assess the biological and clinical significance of TROAP in prostate cancer. We downloaded TROAP mRNA expression data from TCGA and GEO databases. We analyzed expressions of TROAP and other genes in prostate cancer tumors at different stages and assessed Gleason scores. We used Celigo image, Transwell, and rescue assays, and flow cytometry detection to assess growth, apoptosis, proliferation, migration, and invasion of the prostate cancer cells. We identified and validated up- and down-stream genes in the TROAP pathway. The mRNA data suggested that TROAP expression was markedly upregulated in prostate cancer compared with its expression in normal tissues, especially in cancers with high stages and Gleason scores. Moreover, a high TROAP expression was associated with poor patient survival. Results of our in vitro assay showed that TROAP knockdown inhibited DU145 and PC3 cell proliferation and viability via cell apoptosis and S phase cycle arrest. The Transwell assay showed that TROAP knockdown inhibited cell migration and invasion, probably through MMP-9 and E-Cadherin modulation. Overexpression of TWIST partially abrogated the inhibitory effects of TROAP knockdown on prostate cancer cells. Our integrative mechanism dissection revealed that TROAP is in a pathway downstream of EZH2 and that it activates the TWIST/c-Myc pathway to regulate prostate cancer progression. In all, we identified TROAP as a driver of prostate cancer development and progression, providing a novel target for prostate cancer treatments.


Oncotarget ◽  
2014 ◽  
Vol 5 (3) ◽  
pp. 775-787 ◽  
Author(s):  
Anna Goc ◽  
Belal Al-Husein ◽  
Katerina Katsanevas ◽  
Alison Steinbach ◽  
Uvette Lou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marzia Di Donato ◽  
Alice Zamagni ◽  
Giovanni Galasso ◽  
Erika Di Zazzo ◽  
Pia Giovannelli ◽  
...  

AbstractProstate cancer represents the major cause of cancer-related death in men and patients frequently develop drug-resistance and metastatic disease. Most studies focus on hormone-resistance mechanisms related to androgen receptor mutations or to the acquired property of prostate cancer cells to over-activate signaling pathways. Tumor microenvironment plays a critical role in prostate cancer progression. However, the mechanism involving androgen/androgen receptor signaling in cancer associated fibroblasts and consequences for prostate cancer progression still remains elusive. We now report that prostate cancer associated fibroblasts express a transcriptional-incompetent androgen receptor. Upon androgen challenging, the receptor co-localizes with the scaffold protein filamin A in the extra-nuclear compartment of fibroblasts, thus mediating their migration and invasiveness. Cancer-associated fibroblasts move towards epithelial prostate cancer cells in 2D and 3D cultures, thereby inducing an increase of the prostate cancer organoid size. Androgen enhances both these effects through androgen receptor/filamin A complex assembly in cancer-associated fibroblasts. An androgen receptor-derived stapled peptide, which disrupts the androgen receptor/filamin A complex assembly, abolishes the androgen-dependent migration and invasiveness of cancer associated fibroblasts. Notably, the peptide impairs the androgen-induced invasiveness of CAFs in 2D models and reduces the overall tumor area in androgen-treated 3D co-culture. The androgen receptor in association with β1 integrin and membrane type-matrix metalloproteinase 1 activates a protease cascade triggering extracellular matrix remodeling. The peptide also impairs the androgen activation of this cascade. This study offers a potential new marker, the androgen receptor/filamin A complex, and a new therapeutic approach targeting intracellular pathways activated by the androgen/androgen receptor axis in prostate cancer-associated fibroblasts. Such a strategy, alone or in combination with conventional therapies, may allow a more efficient treatment of prostate cancer.


2011 ◽  
Vol 108 (3) ◽  
pp. 424-430 ◽  
Author(s):  
Mu Yao ◽  
Chanlu Xie ◽  
Maryrose Constantine ◽  
Sheng Hua ◽  
Brett D. Hambly ◽  
...  

We have developed a blend of food extracts commonly consumed in the Mediterranean and East Asia, named blueberry punch (BBP), with the ultimate aim to formulate a chemoprevention strategy to inhibit prostate cancer progression in men on active surveillance protocol. We demonstrated previously that BBP inhibited prostate cancer cell proliferation in vitro and in vivo. The purpose of this study was to determine the molecular mechanism responsible for the suppression of prostate cancer cell proliferation by BBP. Treatment of lymph node-metastasised prostate cancer cells (LNCaP) and bone-metastasised prostate cancer cells (PC-3 and MDA-PCa-2b) with BBP (up to 0·8 %) for 72 h increased the percentage of cells at the G0/G1 phase and decreased those at the S and G2/M phases. The finding was supported by the reduction in the percentage of Ki-67-positive cells and of DNA synthesis measured by the incorporation of 5-ethynyl-2′-deoxyuridine. Concomitantly, BBP treatment decreased the protein levels of phosphorylated retinoblastoma, cyclin D1 and E, cyclin-dependent kinase (CDK) 4 and 2, and pre-replication complex (CDC6 and MCM7) in LNCaP and PC-3 cells, whereas CDK inhibitor p27 was elevated in these cell lines. In conclusion, BBP exerts its anti-proliferative effect on prostate cancer cells by modulating the expression and phosphorylation of multiple regulatory proteins essential for cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document