scholarly journals Loss of CENP-I Impairs Homologous Recombination and Sensitizes Cells to PARP1 Inhibition

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3202
Author(s):  
Tuyen T. Dang ◽  
Julio C. Morales

Centromere Protein I (CENP-I) is a member of the CENP-H/I/K complex. CENP-H/I/K is a major component of the inner kinetochore and aids in ensuring proper chromosomal segregation during mitosis. In addition to this chromosomal segregation function, CENP-I also plays a role in DNA double-strand break (DSB) repair. Loss of CENP-I leads to increased endogenous 53BP1 foci and R-loop formation, while reducing cellular survival after ionizing radiation and Niraparib, a PARP1 small molecule inhibitor, exposures. Cells lacking CENP-I display delayed 53BP1 foci regression, an indication that DSB repair is impaired. Additionally, loss of CENP-I impairs the homologous recombination DSB repair pathway, while having no effect on the non-homologous end-joining pathway. Interestingly, we find that RNaseH1 expression restores HR capacity in CENP-I deficient cells. Importantly, CENP-I expression is elevated in glioma tissue as compared to normal brain tissue. This elevated expression also correlates with poor overall patient survival. These data highlight the multi-functional role CENP-I plays in maintaining genetic, as well as chromosomal, stability and tumor survival.

2018 ◽  
Author(s):  
Alexander J. Garvin ◽  
Alexandra K. Walker ◽  
Ruth M. Densham ◽  
Anoop Singh Chauhan ◽  
Helen R. Stone ◽  
...  

AbstractSUMOylation in the DNA double-strand break (DSB) response regulates recruitment, activity and clearance of repair factors. However, our understanding of a role for deSUMOylation in this process is limited. Here we identify different mechanistic roles for deSUMOylation in homologous recombination (HR) and non-homologous enjoining (NHEJ) through the investigation of the deSUMOylase SENP2. We find regulated deSUMOylation of MDC1 prevents excessive SUMOylation and its RNF4-VCP mediated clearance from DSBs, thereby promoting NHEJ. In contrast we show HR is differentially sensitive to SUMO availability and SENP2 activity is needed to provide SUMO. SENP2 is amplified as part of the chromosome 3q amplification in many cancers. Increased SENP2 expression prolongs MDC1 foci retention and increases NHEJ and radioresistance. Collectively our data reveal that deSUMOylation differentially primes cells for responding to DSBs and demonstrates the ability of SENP2 to tune DSB repair responses.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Young Eun Choi ◽  
Yunfeng Pan ◽  
Eunmi Park ◽  
Panagiotis Konstantinopoulos ◽  
Subhajyoti De ◽  
...  

Homologous recombination (HR)-mediated repair of DNA double-strand break (DSB)s is restricted to the post-replicative phases of the cell cycle. Initiation of HR in the G1 phase blocks non-homologous end joining (NHEJ) impairing DSB repair. Completion of HR in G1 cells can lead to the loss-of-heterozygosity (LOH), which is potentially carcinogenic. We conducted a gain-of-function screen to identify miRNAs that regulate HR-mediated DSB repair, and of these miRNAs, miR-1255b, miR-148b*, and miR-193b* specifically suppress the HR-pathway in the G1 phase. These miRNAs target the transcripts of HR factors, BRCA1, BRCA2, and RAD51, and inhibiting miR-1255b, miR-148b*, and miR-193b* increases expression of BRCA1/BRCA2/RAD51 specifically in the G1-phase leading to impaired DSB repair. Depletion of CtIP, a BRCA1-associated DNA end resection protein, rescues this phenotype. Furthermore, deletion of miR-1255b, miR-148b*, and miR-193b* in independent cohorts of ovarian tumors correlates with significant increase in LOH events/chromosomal aberrations and BRCA1 expression.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


2021 ◽  
Author(s):  
Xiaocui Li ◽  
Xiaojuan Li ◽  
Chen Xie ◽  
Sihui Cai ◽  
Mengqiu Li ◽  
...  

AbstractAs a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.


Open Biology ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 160225 ◽  
Author(s):  
Sylvie Moureau ◽  
Janna Luessing ◽  
Emma Christina Harte ◽  
Muriel Voisin ◽  
Noel Francis Lowndes

Loss of p53, a transcription factor activated by cellular stress, is a frequent event in cancer. The role of p53 in tumour suppression is largely attributed to cell fate decisions. Here, we provide evidence supporting a novel role for p53 in the regulation of DNA double-strand break (DSB) repair pathway choice. 53BP1, another tumour suppressor, was initially identified as p53 Binding Protein 1, and has been shown to inhibit DNA end resection, thereby stimulating non-homologous end joining (NHEJ). Yet another tumour suppressor, BRCA1, reciprocally promotes end resection and homologous recombination (HR). Here, we show that in both human and mouse cells, the absence of p53 results in impaired 53BP1 focal recruitment to sites of DNA damage induced by ionizing radiation. This effect is largely independent of cell cycle phase and the extent of DNA damage. In p53-deficient cells, diminished localization of 53BP1 is accompanied by a reciprocal increase in BRCA1 recruitment to DSBs. Consistent with these findings, we demonstrate that DSB repair via NHEJ is abrogated, while repair via homology-directed repair (HDR) is stimulated. Overall, we propose that in addition to its role as an ‘effector’ protein in the DNA damage response, p53 plays a role in the regulation of DSB repair pathway choice.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Xuan Li ◽  
Jessica K Tyler

The cell achieves DNA double-strand break (DSB) repair in the context of chromatin structure. However, the mechanisms used to expose DSBs to the repair machinery and to restore the chromatin organization after repair remain elusive. Here we show that induction of a DSB in human cells causes local nucleosome disassembly, apparently independently from DNA end resection. This efficient removal of histone H3 from the genome during non-homologous end joining was promoted by both ATM and the ATP-dependent nucleosome remodeler INO80. Chromatin reassembly during DSB repair was dependent on the HIRA histone chaperone that is specific to the replication-independent histone variant H3.3 and on CAF-1 that is specific to the replication-dependent canonical histones H3.1/H3.2. Our data suggest that the epigenetic information is re-established after DSB repair by the concerted and interdependent action of replication-independent and replication-dependent chromatin assembly pathways.


2018 ◽  
Author(s):  
Florian Hahn ◽  
Marion Eisenhut ◽  
Otho Mantegazza ◽  
Andreas P.M. Weber

ABSTRACTThe CRISPR/Cas9 system has emerged as a powerful tool for targeted genome editing in plants and beyond. Double-strand breaks induced by the Cas9 enzyme are repaired by the cell’s own repair machinery either by the non-homologous end joining pathway or by homologous recombination. While the first repair mechanism results in random mutations at the double-strand break site, homologous recombination uses the genetic information from a highly homologous repair template as blueprint for repair of the break. By offering an artificial repair template, this pathway can be exploited to introduce specific changes at a site of choice in the genome. However, frequencies of double-strand break repair by homologous recombination are very low. In this study, we compared two methods that have been reported to enhance frequencies of homologous recombination in plants. The first method boosts the repair template availability through the formation of viral replicons, the second method makes use of an in planta gene targeting approach. Additionally, we comparatively applied a nickase instead of a nuclease for target strand priming. To allow easy, visual detection of homologous recombination events, we aimed at restoring trichome formation in a glabrous Arabidopsis mutant by repairing a defective glabrous1 gene. Using this efficient visual marker, we were able to regenerate plants repaired by homologous recombination at frequencies of 0.12% using the in planta gene targeting approach, while both approaches using viral replicons did not yield any trichome-bearing plants.


2019 ◽  
Vol 27 (4) ◽  
pp. 1383-1397 ◽  
Author(s):  
Ying Xie ◽  
Yi-Ke Liu ◽  
Zong-Pei Guo ◽  
Hua Guan ◽  
Xiao-Dan Liu ◽  
...  

Abstract End resection of DNA double-strand breaks (DSBs) to form 3′ single-strand DNA (ssDNA) is critical to initiate the homologous recombination (HR) pathway of DSB repair. HR pathway is strictly limited in the G1-phase cells because of lack of homologous DNA as the templates. Exonuclease 1 (EXO1) is the key molecule responsible for 3′ ssDNA formation of DSB end resection. We revealed that EXO1 is inactivated in G1-phase cells via ubiquitination-mediated degradation, resulting from an elevated expression level of RING-box protein 1 (RBX1) in G1 phase. The increased RBX1 significantly prompted the neddylation of Cullin1 and contributed to the G1 phase-specific degradation of EXO1. Knockdown of RBX1 remarkedly attenuated the degradation of EXO1 and increased the end resection and HR activity in γ-irradiated G1-phase cells, as demonstrated by the increased formation of RPA32, BrdU, and RAD51 foci. And EXO1 depletion mitigated DNA repair defects due to RBX1 reduction. Moreover, increased autophosphorylation of DNA-PKcs at S2056 was found to be responsible for the higher expression level of the RBX1 in the G1 phase. Inactivation of DNA-PKcs decreased RBX1 expression, and simultaneously increased EXO1 expression and DSB end resection in G1-phase cells. This study demonstrates a new mechanism for restraining the HR pathway of DNA DSB repair in G1 phase via RBX1-prompted inactivation of EXO1.


Sign in / Sign up

Export Citation Format

Share Document