scholarly journals Image-Based Identification and Genomic Analysis of Single Circulating Tumor Cells in High Grade Serous Ovarian Cancer Patients

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3748
Author(s):  
Carolin Salmon ◽  
Janina Levermann ◽  
Rui P. L. Neves ◽  
Sven-Thorsten Liffers ◽  
Jan Dominik Kuhlmann ◽  
...  

In Ovarian Cancer (OC), the analysis of single circulating tumor cells (sCTCs) might help to investigate genetic tumor evolution during the course of treatment. Since common CTC identification features failed to reliably detect CTCs in OC, we here present a workflow for their detection and genomic analysis. Blood of 13 high-grade serous primary OC patients was analyzed, using negative immunomagnetic enrichment, followed by immunofluorescence staining and imaging for Hoechst, ERCC1, CD45, CD11b and cytokeratin (CK) and sCTC sorting with the DEPArrayTM NxT. The whole genome of single cells was amplified and profiled for copy number variation (CNV). We detected: Type A-cells, epithelial (Hoechstpos, ERCC1pos, CD45neg, CD11bpos, CKpos); Type B-cells, potentially epithelial (Hoechstpos, ERCC1pos, CD45neg, CD11bpos, CKneg) and Type C-cells, potentially mesenchymal (Hoechstpos, ERCC1pos, CD45neg, CD11bneg, CKneg). In total, we identified five (38.5%) patients harboring sCTCs with an altered CN profile, which were mainly Type A-cells (80%). In addition to inter-and intra-patient genomic heterogeneity, high numbers of Type B- and C-cells were identified in every patient with their aberrant character only confirmed in 6.25% and 4.76% of cases. Further identification markers and studies in the course of treatment are under way to expand sCTC analysis for the identification of tumor evolution in OC.

2021 ◽  
Author(s):  
Carolin Salmon ◽  
Janina Levermann ◽  
Paul Buderath ◽  
Jan Dominik Kuhlmann ◽  
Pauline Wimberger ◽  
...  

2018 ◽  
Vol 30 (8) ◽  
pp. 1137 ◽  
Author(s):  
E. Beltrán-Frutos ◽  
V. Seco-Rovira ◽  
J. Martínez-Hernández ◽  
C. Ferrer ◽  
L. M. Pastor

The aim of the present study was to evaluate the changes that occur in hamster Leydig cells during regression. Animals were divided into control, mild regression (MR), strong regression (SR) and total regression (TR) groups. Leydig cells were characterised by light and electron microscopy. Terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) antibodies were used to detect apoptosis and proliferation respectively. Three types of Leydig cells (A, B and C) could be differentiated. Type A cells were small in size compared with Leydig cells from animals exposed to a long photoperiod, which was a result of a decreased cytoplasm and nucleus. Type B cells were even smaller than Type A cells in regression groups. Type C exhibited cytoplasm vacuolisation. The percentage of Type C cells from the control group was much lower than in the MR, SR and TR groups. (P < 0.05). In the SR and TR groups, there was a significant decrease in the percentage of Type B cells compared with the control and MR groups (P < 0.05). The total number of Leydig cells decreased during testicular regression (P < 0.05). The total number of Type A and B cells was significantly lower in the MR, SR and TR groups compared with the control group (P < 0.05). There were no significant differences in the proliferation and apoptosis index in the groups studied. The findings of the present study indicate that there are three types of Leydig cells (A, B and C) in all hamsters studied and that regression causes an increase in the number of Type C cells, so that the reduction in the number Leydig cells during the phases of regression studied must be the result of necrosis and/or necroptosis.


2020 ◽  
Author(s):  
Jiani Yang ◽  
Jun Ma ◽  
Yue Jin ◽  
Shanshan Cheng ◽  
Shan Huang ◽  
...  

Abstract We aimed to determine prognosis value of circulating tumor cells(CTCs) undergoing epithelial–mesenchymal transition(EMT) in epithelial ovarian cancer(EOC) recurrence. We used CanPatrol CTC-enrichment technique to detect CTCs from blood samples and classify subpopulations into epithelial, mesenchymal and hybrids. To construct nomogram, prognostic factors were selected by Cox regression analysis. Risk stratification was performed through Kaplan–Meier analysis among training group(n=114) and validation group(n=38). By regression screening, both CTC counts(HR 1.187; 95%CI 1.098-1.752; p=0.012) and M-CTC(HR 1.098; 95%CI 1.047-1.320; p=0.009) were demonstrated as independent factors for recurrence. Other variables including pathological grade, FIGO stage, lymph node metastasis, ascites and CA-125 were also collected(p < 0.005) to construct nomogram. The C-index of internal and external validation for nomogram was 0.913 and 0.874. We found significant predictive value for nomogram with/without CTCs (AUC 0.8705 and 0.8097). Taking CTC counts and M-CTC into separation, the values were 0.8075 and 0.8262. Finally, survival curves of risk stratification based on CTC counts(p=0.0241), M-CTC(p=0.0107) and the nomogram(p=0.0021) were drawn with significant difference. In conclusion, CTCs could serve as a novel factor for EOC prognosis. Nomogram model constructed by CTCs and other clinical parameters could predict EOC recurrence and perform risk stratification for clinical decision-making.Trial registration: Chinese Clinical Trial Registry, ChiCTR-DDD-16009601, October 25, 2016


2018 ◽  
Vol 19 (6) ◽  
pp. 454-460 ◽  
Author(s):  
Alexcia Camila Braun ◽  
Celso Abdon Lopes de Mello ◽  
Marcelo Corassa ◽  
Emne Ali Abdallah ◽  
Ana Cláudia Urvanegia ◽  
...  

2020 ◽  
Vol 159 ◽  
pp. 158
Author(s):  
O.T. Filippova ◽  
P. Selenica ◽  
S.S. Lee ◽  
X. Pei ◽  
N. Riaz ◽  
...  

1996 ◽  
Vol 75 (4) ◽  
pp. 1432-1443 ◽  
Author(s):  
A. Lavin ◽  
A. A. Grace

1. The physiology of ventral pallidal (VP) cells was investigated using in vivo intracellular recording and staining techniques in adult rats. Based on electrophysiological criteria, three different types of cells were found: type A cells, which fired phasic spikes that did not exhibit a substantial afterhyperpolarization (AHP), type B cells, which exhibited a slow ramplike depolarization that preceded the short-duration action potential; the spike was followed by a prominent AHP, and type C cells, which were the only cells that fired spikes in couplets or bursts, with the spikes in a burst exhibiting a progressive increase in duration and a decrease in amplitude. These cells also exhibited a rebound low threshold spikelike event. Furthermore, 18% of the VP cells recorded exhibited a slow subthreshold oscillation of the membrane potential (< 1 Hz). 2. The response of VP cells to stimulation of fibers arising from the prefrontal cortex, nucleus accumbens, and mediodorsal thalamic nucleus (MD) was examined. In contrast to our initial predictions, all cells responded to nucleus accumbens stimulation with excitation. Type A and B cells responded to nucleus accumbens stimulation with excitation and to MD stimulation with antidromic-like responses, orthodromic excitation, or evoked inhibitory postsynaptic potentials. Only type A cells responded to prefrontal cortical stimulation. Type C cells only responded to stimulation of the nucleus accumbens, which resulted in evoked excitatory postsynaptic potentials. 3. The cells in the VP therefore can be segregated into three physiologically defined groups according to action potential discharge patterns and their response to afferent fiber stimulation.


Sign in / Sign up

Export Citation Format

Share Document