scholarly journals Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5431
Author(s):  
Christian M. Vonk ◽  
Adil S. A. Al Al Hinai ◽  
Diana Hanekamp ◽  
Peter J. M. Valk

Initial induction chemotherapy to eradicate the bulk of acute myeloid leukemia (AML) cells results in complete remission (CR) in the majority of patients. However, leukemic cells persisting in the bone marrow below the morphologic threshold remain unaffected and have the potential to proliferate and re-emerge as AML relapse. Detection of minimal/measurable residual disease (MRD) is a promising prognostic marker for AML relapse as it can assess an individual patients’ risk profile and evaluate their response to treatment. With the emergence of molecular techniques, such as next generation sequencing (NGS), a more sensitive assessment of molecular MRD markers is available. In recent years, the detection of MRD by molecular assays and its association with AML relapse and survival has been explored and verified in multiple studies. Although most studies show that the presence of MRD leads to a worse clinical outcome, molecular-based methods face several challenges including limited sensitivity/specificity, and a difficult distinction between mutations that are representative of AML rather than clonal hematopoiesis. This review describes the studies that have been performed using molecular-based assays for MRD detection in the context of other MRD detection approaches in AML, and discusses limitations, challenges and opportunities.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2996-2996
Author(s):  
Alexander A. Morley ◽  
Scott A. Grist ◽  
Xiao J. Lu ◽  
Katrina Patsouris

Abstract Measurement of minimal residual disease (MRD) is being increasingly used in haematological malignancies in order to assess prognosis and decide on treatment. However for some patients, including many patients with acute myeloid leukemia (AML), molecular techniques for MRD measurement cannot be performed owing to lack of a molecular marker. We have detected mitochondrial mutations (MM) in the D loop of the mitochondrial genome of the leukemic cells in approximately 40% of patients with AML and have investigated 2 techniques - denaturing gradient gel electrophoresis (DGGE) and single nucleotide primer extension (SNUPE) - to detect and quantify them. Mixing experiments showed that DGGE had a sensitivity of approximately 0.5% for detection of MM, and it was able to detect leukemia in remission marrow in 5 of 6 patients with AML. When present in a patient, MM are usually multiple. We therefore tested a 2-step strategy, as shown in the figure, which involved initial enrichment by PCR using primers directed at 1 or 2 flanking mutations followed by DGGE to detect an inner mutation. In 2 mixing experiments this 2-step strategy increased sensitivity of detection down to 0.0001% (this level of detection was evident in the original gel photo). Figure Figure SNUPE was more sensitive than DGGE and in 3 mixing experiments it showed a sensitivity of 0.02–0.05%. Four patients with AML have now been studied by SNUPE and the levels of MRD in the marrow documenting morphological remission at the end of induction therapy were 2.8%,16.1%,40.8% and 15.7%. The relatively high levels of MRD as measured by PCR in 3 patients suggest that some of the leukaemic cells at the end of induction may be more mature than blasts and thus not identifiable by morphology. While questions remain to be answered, mitochondrial mutations are promising molecular markers for quantifying MRD in AML and possibly other haematological disorders


2020 ◽  
Vol 48 (7) ◽  
pp. e40-e40
Author(s):  
Andrea B Moffitt ◽  
Mona S Spector ◽  
Peter Andrews ◽  
Jude Kendall ◽  
Joan Alexander ◽  
...  

Abstract Measuring minimal residual disease in cancer has applications for prognosis, monitoring treatment and detection of recurrence. Simple sequence-based methods to detect nucleotide substitution variants have error rates (about 10−3) that limit sensitive detection. We developed and characterized the performance of MASQ (multiplex accurate sensitive quantitation), a method with an error rate below 10−6. MASQ counts variant templates accurately in the presence of millions of host genomes by using tags to identify each template and demanding consensus over multiple reads. Since the MASQ protocol multiplexes 50 target loci, we can both integrate signal from multiple variants and capture subclonal response to treatment. Compared to existing methods for variant detection, MASQ achieves an excellent combination of sensitivity, specificity and yield. We tested MASQ in a pilot study in acute myeloid leukemia (AML) patients who entered complete remission. We detect leukemic variants in the blood and bone marrow samples of all five patients, after induction therapy, at levels ranging from 10−2 to nearly 10−6. We observe evidence of sub-clonal structure and find higher target variant frequencies in patients who go on to relapse, demonstrating the potential for MASQ to quantify residual disease in AML.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2465-2470 ◽  
Author(s):  
J.F. San Miguel ◽  
A. Martı́nez ◽  
A. Macedo ◽  
M.B. Vidriales ◽  
C. López-Berges ◽  
...  

Abstract A high complete remission rate is currently achieved in patients with acute myeloid leukemia (AML). However, many patients eventually relapse due to the persistence of low numbers of residual leukemic cells that are undetectable by conventional cytomorphologic criteria (minimal residual disease [MRD]). Using immunophenotypic multiparametric flow cytometry, we have investigated in sequential studies (diagnosis and follow-up) the impact of MRD detection on the outcome of 53 AML patients that had achieved morphologic remission with standard AML protocols and displayed at diagnosis an aberrant phenotype. Patients were studied at diagnosis with a panel of 35 monoclonal antibodies in triple staining combinations for detection of aberrant or uncommon phenotypic features. According to these features, a patient's probe was custom-built at diagnosis for the identification of possible residual leukemic cells during follow-up. The level of MRD at the end of induction and intensification therapy correlated with the number of relapses and relapse-free survival (RFS). Thus, patients with more than 5 × 10−3 residual cells (5 residual cells among 1,000 normal bone marrow [BM] cells) identified as leukemic by immunophenotyping in the first remission BM showed a significant higher rate of relapse (67% v 20% for patients with less than 5 × 10−3 residual cells; P = .002) and a lower median RFS (17 months v not reached; P = .01). At the end of intensification, with a cut-off value of 2 × 10−3 leukemic cells, AML patients also separated into two distinct groups with relapse rates of 69% versus 32% (P = .02), respectively, and median RFS of 16 months versus not reached (P = .04). In addition, overall survival was also significantly related to the level of residual cells in the marrow obtained at the end of induction and particularly after intensification therapy (P = .008). Furthermore, we have explored whether residual disease was related with the functional expression of multidrug resistance (MDR-1) at diagnosis as assessed by the rhodamine-123 assay. Patients with ≥5 × 10−3 residual leukemic cells at the end of induction therapy had a significantly higher rhodamine-123 efflux (mean, 56% ± 24%) than those with less than 5 × 10−3 residual cells (mean, 32% ± 31%; P = .04). Finally, multivariate analysis showed that the number of residual cells at the end of induction or intensification therapy was the most important prognostic factor for prediction of RFS. Overall, our results show that immunophenotypical investigation of MRD strongly predicts outcome in patients with AML and that the number of residual leukemic cells correlates with multidrug resistance.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Håkon Reikvam ◽  
Kimberley Joanne Hatfield ◽  
Astrid Olsnes Kittang ◽  
Randi Hovland ◽  
Øystein Bruserud

The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the differentiation, and the viability of leukemic cells. The translocation can be detected as the only genetic abnormality or as part of more complex abnormalities. If t(8;21) is detected in a patient with bone marrow pathology, the diagnosis AML can be made based on this abnormality alone. t(8;21) is usually associated with a good prognosis. Whether the detection of the fusion gene can be used for evaluation of minimal residual disease and risk of leukemia relapse remains to be clarified. To conclude, detection of t(8;21) is essential for optimal handling of these patients as it has both diagnostic, prognostic, and therapeutic implications.


2018 ◽  
Vol 49 (1) ◽  
pp. 20-27
Author(s):  
Amina H Hassab ◽  
Dalia A Nafea ◽  
Rania S Swelem ◽  
Basma M Ghazal

AbstractBackgroundAcute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by a clonal expansion of myeloid blasts. Treatment strategies of patients with AML are based on various prognostic factors, including age and performance status of the patient, as well as cytogenetic and molecular characteristics of the leukemic clone.Our aim was to study the expression of cluster of differentiation (CD)25 in adult Egyptian patients with newly diagnosed AML and to assess its prognostic relevance.MethodsThis study was conducted on 50 newly diagnosed AML patients at the Hematology Unit, Internal Medicine Department, Alexandria Main University Hospital. All patients were subjected to full history taking, thorough clinical examination, and laboratory investigations, including detection of CD25 expression on blast cells by flow cytometry. Conventional karyotyping was done on 11 patients at the time of diagnosis.ResultsIn our study group, 12 patients were positive for CD25 expression, and this positivity was associated with worse overall survival and shorter leukemia-free survival. On evaluating the response to treatment among CD25-positive AML patients with normal karyotype, they had lower complete remission rates and higher relapse and death rates.ConclusionsExpression of CD25 in AML patients at presentation can be considered a poor independent prognostic factor.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2465-2470 ◽  
Author(s):  
J.F. San Miguel ◽  
A. Martı́nez ◽  
A. Macedo ◽  
M.B. Vidriales ◽  
C. López-Berges ◽  
...  

A high complete remission rate is currently achieved in patients with acute myeloid leukemia (AML). However, many patients eventually relapse due to the persistence of low numbers of residual leukemic cells that are undetectable by conventional cytomorphologic criteria (minimal residual disease [MRD]). Using immunophenotypic multiparametric flow cytometry, we have investigated in sequential studies (diagnosis and follow-up) the impact of MRD detection on the outcome of 53 AML patients that had achieved morphologic remission with standard AML protocols and displayed at diagnosis an aberrant phenotype. Patients were studied at diagnosis with a panel of 35 monoclonal antibodies in triple staining combinations for detection of aberrant or uncommon phenotypic features. According to these features, a patient's probe was custom-built at diagnosis for the identification of possible residual leukemic cells during follow-up. The level of MRD at the end of induction and intensification therapy correlated with the number of relapses and relapse-free survival (RFS). Thus, patients with more than 5 × 10−3 residual cells (5 residual cells among 1,000 normal bone marrow [BM] cells) identified as leukemic by immunophenotyping in the first remission BM showed a significant higher rate of relapse (67% v 20% for patients with less than 5 × 10−3 residual cells; P = .002) and a lower median RFS (17 months v not reached; P = .01). At the end of intensification, with a cut-off value of 2 × 10−3 leukemic cells, AML patients also separated into two distinct groups with relapse rates of 69% versus 32% (P = .02), respectively, and median RFS of 16 months versus not reached (P = .04). In addition, overall survival was also significantly related to the level of residual cells in the marrow obtained at the end of induction and particularly after intensification therapy (P = .008). Furthermore, we have explored whether residual disease was related with the functional expression of multidrug resistance (MDR-1) at diagnosis as assessed by the rhodamine-123 assay. Patients with ≥5 × 10−3 residual leukemic cells at the end of induction therapy had a significantly higher rhodamine-123 efflux (mean, 56% ± 24%) than those with less than 5 × 10−3 residual cells (mean, 32% ± 31%; P = .04). Finally, multivariate analysis showed that the number of residual cells at the end of induction or intensification therapy was the most important prognostic factor for prediction of RFS. Overall, our results show that immunophenotypical investigation of MRD strongly predicts outcome in patients with AML and that the number of residual leukemic cells correlates with multidrug resistance.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 7529-7529
Author(s):  
Sanam Loghavi ◽  
Tomoyuki Tanaka ◽  
Ken Furudate ◽  
Sa A Wang ◽  
Koichi Takahashi

7529 Background: Clonal Hematopoiesis may persist following complete remission (CR) in patients with acute myeloid leukemia (AML) but does not necessarily indicate residual AML and may represent persistence of pre-leukemic stem cells. Post-remission CH identified by NGS has not been systemically studied in parallel with measurable residual disease (MRD) detection by flow cytometric immunophenotyping (FCI). Methods: We studied bone marrow sample from AML patients at baseline and CR by targeted deep NGS of 295 genes (median 403x depth) and compared the results to FCI. Measurable residual disease (MRD) detection by FCI was performed by comparing the phenotype at CR to baseline and by detection of leukemia associated immunophenotype (LAIP) and derivation from normal (DFN) (sensitivity: 0.1%). Post-CR CH was defined as presence of mutations originally detected in AML with variant allele frequency > 2.5%. FCI results were categorized into 4 groups: a) AML MRD negative by LAIP or DFN b) AML MRD+ (similar to baseline) c) AML MRD+ (different from baseline), d) Negative for AML MRD, but aberrant phenotype suggestive of pre-leukemic cells. We correlated FCI and NGS results. Results: 101 patients were included in the study. 45 (45%) had persistent post-CR clonal hematopoiesis; 23 (51%) had phenotypic alterations detected by FCI including AML MRD+ in 18 (40%) and pre-leukemic cells in 5 (10%). Among patient with no detectable mutations by NGS (n = 56; 55%), 14 (25%) had FCI aberrancies including AML MRD+ in 4 (7%) and pre-leukemic cells in 10 (18%). CH was significantly more common in samples with residual phenotypic aberrancies detected by FCI (p = 0.004). There was no significant correlation between FCI group d and persistent CH (p = 0.4). Persistent ASXL1 (p = 0.024, OR = 7.2 ) and RUNX1 (p = 0.016; OR = 17.3) mutations were significantly associated with FCI abnormalities. The correlation coefficient between FCI abnormalities and RUNX1 mutations inferred from a Bayesian network structure was 0.66. Conclusions: NGS and FCI are complementary in evaluating post treatment disease status in AML. Post CR-CH is associated with phenotypic abnormalities that either represent residual AML or pre-leukemic cells. The latter may not have the same prognostic implications as AML MRD; however, the association with outcome needs to be elucidated. Single cell DNA sequencing technologies may be helpful in more accurately deciphering the association of individual gene mutations and their contribution to phenotypic aberrations.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1461-1461
Author(s):  
Daniel Steinbach ◽  
Alexander Schramm ◽  
Angelika Eggert ◽  
Susann Wittig ◽  
Nadine Pfaffendorf ◽  
...  

Abstract A stepwise approach which combined genome wide expression profiling and a TaqMan realtime PCR based screening was used to identify new markers for the monitoring of minimal residual disease (MRD) in acute myeloid leukemia (AML). Leukemic cells from 52 children with AML were analyzed. Seven genes were identified which are vastly over-expressed in many patients with AML compared to healthy bone marrow: CCL23, GAGED2, MSLN, SPAG6, and ST18 as well as the previously described markers WT1 and PRAME. This set of genes was analyzed in 141 follow-up samples from 25 patients. The expression of all genes decreased to normal levels in patients who achieved a continuous complete remission. Elevated levels of MRD markers were found prior to relapse in 7 out of 10 patients who relapsed. This set of genes should allow a sensitive and specific monitoring of MRD in AML. Notably, some of these markers could also serve as therapeutic targets or might be involved in leukemogenesis. MSLN is already used as a target for immunotherapy in clinical trials in other malignancies. GAGED2 and SPAG6 belong to the family of cancer testis genes which are also studied intensively as targets for immunotherapy. ST18 is a recently discovered tumor suppressor which was not yet described in hematological malignancies. CCL23 is a chemokine that inhibits the proliferation of healthy hematological stem cells. Names, symbols, and geneID of seven MRD markers Gene Symbol Gene Name GeneID CCL23 chemokine (C–C motif) ligand 23 6368 GAGED2 G antigen, family D, 2 9503 MSLN Mesothelin 10232 SPAG6 sperm associated antigen 6 9576 ST18 suppression of tumorigenicity 18 9705 WT1 Wilms tumor 1 7490 PRAME preferentially expressed antigen in melanoma 23532


Sign in / Sign up

Export Citation Format

Share Document