scholarly journals HIF-Dependent CKB Expression Promotes Breast Cancer Metastasis, Whereas Cyclocreatine Therapy Impairs Cellular Invasion and Improves Chemotherapy Efficacy

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 27
Author(s):  
Raisa I. Krutilina ◽  
Hilaire Playa ◽  
Danielle L. Brooks ◽  
Luciana P. Schwab ◽  
Deanna N. Parke ◽  
...  

The oxygen-responsive hypoxia inducible factor (HIF)-1 promotes several steps of the metastatic cascade. A hypoxic gene signature is enriched in triple-negative breast cancers (TNBCs) and is correlated with poor patient survival. Inhibiting the HIF transcription factors with small molecules is challenging; therefore, we sought to identify genes downstream of HIF-1 that could be targeted to block invasion and metastasis. Creatine kinase brain isoform (CKB) was identified as a highly differentially expressed gene in a screen of HIF-1 wild type and knockout mammary tumor cells derived from a transgenic model of metastatic breast cancer. CKB is a cytosolic enzyme that reversibly catalyzes the phosphorylation of creatine, generating phosphocreatine (PCr) in the forward reaction, and regenerating ATP in the reverse reaction. Creatine kinase activity is inhibited by the creatine analog cyclocreatine (cCr). Loss- and gain-of-function genetic approaches were used in combination with cCr therapy to define the contribution of CKB expression or creatine kinase activity to cell proliferation, migration, invasion, and metastasis in ER-negative breast cancers. CKB was necessary for cell invasion in vitro and strongly promoted tumor growth and lung metastasis in vivo. Similarly, cyclocreatine therapy repressed cell migration, cell invasion, the formation of invadopodia and lung metastasis. Moreover, in common TNBC cell line models, the addition of cCr to conventional cytotoxic chemotherapy agents was either additive or synergistic to repress tumor cell growth.

2021 ◽  
Author(s):  
Raisa I. Krutilina ◽  
Hilaire C. Playa ◽  
Danielle L. Brooks ◽  
Luciana P. Schwab ◽  
Deanna N. Parke ◽  
...  

AbstractThe oxygen-responsive Hypoxia Inducible Factor (HIF)-1 promotes several steps of the metastatic cascade. A hypoxic gene signature is enriched in triple negative breast cancers (TNBCs), which correlates with poor patient survival. Since inhibiting the HIF transcription factors with small molecules is challenging, we sought to identify genes downstream of HIF-1 that could be targeted to block invasion and metastasis. Creatine kinase brain isoform (CKB) was identified as a highly differentially expressed gene in a screen of HIF-1 wild type and knockout mammary tumor cells derived from a transgenic model of metastatic breast cancer. CKB is a cytosolic enzyme that reversibly catalyzes the phosphorylation of creatine, generating phosphocreatine (PCr) in the forward reaction, and regenerating ATP in the reverse reaction. Creatine kinase activity is inhibited by the creatine analog cyclocreatine (cCr). Loss and gain of function genetic approaches were used in combination with cCr therapy to define the contribution of CKB expression or creatine kinase activity to cell proliferation, migration, invasion, and metastasis in ER-negative breast cancers. Although tumor cell-intrinsic CKB was not essential for breast tumor cell proliferation or cell migration in vitro, CKB was necessary for cell invasion in vitro and strongly promoted tumor growth and metastasis in vivo. Similarly, cyclocreatine therapy repressed cell migration, cell invasion, formation of invadopodia, and lung metastasis. Moreover, in common TNBC cell line models, the addition of cCr to conventional agents, paclitaxel (Taxol) or doxorubicin, was either additive or synergistic to repress tumor cell growth.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15503-e15503
Author(s):  
Jun Lin ◽  
Ru Li ◽  
Yujie Huang

e15503 Background: Metastatic breast cancer is a pressing health concern worldwide. Various treatments have been developed but no significant long-term changes in overall survival are observed. Therefore, there is a demand to improve current therapies to treat this disease. Surgical resection of the primary tumors is essential in the treatment. However, accumulating evidence alludes to a role for volatile anesthetics which are used during the surgery in metastatic tumor development, but the mechanism remains largely unknown. We have shown anesthetics exert different effects on lung metastasis in mouse models of breast cancers. This study analyses the effect of general anesthetics in lung microenvironment associated with the increased metastases. Methods: Balb/c mice and NOD-SCID mice were orthotopically implanted with 4T1 cells and MDA-MB-231 cells respectively, in the mammary fat pad to generate primary tumors. Mice were subjected to the tested anesthetic during implantation and/or before and after surgery. Surgical dissection of primary tumor was performed under anesthesia with sevoflurane or an intravenous anesthetic propofol. Survival curve was constructed and analysed. Mice were euthanized to harvest tissues for histology and cell analysis. Results: As we previously reported, surgical dissection of primary tumor in mice under anesthesia with sevoflurane led to significantly more lung metastasis than with propofol in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. Sevoflurane was associated with increased IL6(Li, Huang, & Lin, 2020). Here we show that anesthesia with sevoflurane resulted in changes of stroma composition in the lung, which was reversed by IL6 pathway interruption. Conclusions: Those results contribute to our understanding of effects of sevoflurane on cancer metastasis and suggest a potential therapeutic approach to overcome the risk of general anesthesia. Li, R., Huang, Y., & Lin, J. (2020). Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat Commun, 11, 642.


1986 ◽  
Vol 464 (1 Endocrinology) ◽  
pp. 511-513 ◽  
Author(s):  
GIOVANNI SCAMBIA ◽  
PIERLUIGI BENEDETTI PANICI ◽  
GIGLIOLA SICA ◽  
VITTORIA NATOLI ◽  
ALESSANDRO CARUSO ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3644
Author(s):  
Daeun You ◽  
Yisun Jeong ◽  
Sun Young Yoon ◽  
Sung A Kim ◽  
Eunji Lo ◽  
...  

Interleukin-1 (IL1) is a proinflammatory cytokine and promotes cancer cell proliferation and invasiveness in a diversity of cancers, such as breast and colon cancer. Here, we focused on the pharmacological effect of Entelon® (ETL) on the tumorigenesis of triple-negative breast cancer (TNBC) cells by IL1-alpha (IL1A). IL1A enhanced the cell growth and invasiveness of TNBC cells. We observed that abnormal IL1A induction is related with the poor prognosis of TNBC patients. IL1A also increased a variety of chemokines such as CCL2 and IL8. Interestingly, IL1A expression was reduced by the ETL treatment. Here, we found that ETL significantly decreased the MEK/ERK signaling pathway in TNBC cells. IL1A expression was reduced by UO126. Lastly, we studied the effect of ETL on the metastatic potential of TNBC cells. Our results showed that ETL significantly reduced the lung metastasis of TNBC cells. Our results showed that IL1A expression was regulated by the MEK/ERK- and PI3K/AKT-dependent pathway. Taken together, ETL inhibited the MEK/ERK and PI3K/AKT signaling pathway and suppressing the lung metastasis of TNBC cells through downregulation of IL1A. Therefore, we propose the possibility of ETL as an effective adjuvant for treating TNBC.


1999 ◽  
Vol 279 (1-2) ◽  
pp. 107-115 ◽  
Author(s):  
Eli I. Lev ◽  
Ilan Tur-Kaspa ◽  
Isaac Ashkenazy ◽  
Anat Reiner ◽  
David Faraggi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document