scholarly journals Low-Temperature Catalytic CO Oxidation Over Non-Noble, Efficient Chromia in Reduced Graphene Oxide and Graphene Oxide Nanocomposites

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 105 ◽  
Author(s):  
Asma A. Ali ◽  
Metwally Madkour ◽  
Fakhreia Al Sagheer ◽  
Mohamed I. Zaki ◽  
Ahmed Abdel Nazeer

Herein, bare chromia nanoparticles (Cr2O3 NPs) and chromia supported on reduced graphene oxide (rGO) and graphene oxide (GO) hybrids were synthesized, followed by characterization by means of FESEM, Raman spectroscopy, TGA, XRD, TEM/HRTEM, XPS and N2 sorptiometry. The investigated bare Cr2O3 and the hybrids (Cr2O3/rGO and Cr2O3/GO) were employed as catalysts for low-temperature CO oxidation. Compared with the other catalysts, the results revealed efficient catalytic activity using Cr2O3/GO, which was attributed to its higher surface area together with the mixed oxidation state of chromium (Cr3+ and Cr>3+). These are important oxidation sites that facilitate the electron mobility essential for CO oxidation. Moreover, the presence of carbon vacancy defects and functional groups facilitate the stabilizing of Cr2O3 NPs on its surface, forming a thermally stable hybrid material, which assists the CO oxidation process. The Cr2O3/GO hybrid is a promising low-cost and efficient catalyst for CO oxidation at low temperatures. The higher activity of graphene oxide supported Cr2O3 NPs can provide an efficient and cost-effective solution to a prominent environmental problem.

RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35004-35011 ◽  
Author(s):  
Suling Yang ◽  
Gang Li ◽  
Chen Qu ◽  
Guifang Wang ◽  
Dan Wang

A new kind of ZnO nanoparticle/N-doped reduced graphene oxide nanocomposite (ZnONPs/N-rGO) was synthesized through a low temperature, low-cost and one step hydrothermal process.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103105-103115 ◽  
Author(s):  
Najrul Hussain ◽  
Pranjal Gogoi ◽  
Puja Khare ◽  
Manash R. Das

Synthesis of magnetically recoverable Ni nanoparticles supported reduced graphene oxide sheets as an efficient catalyst for the Sonogashira cross-coupling reaction.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 12227-12234
Author(s):  
Hisham S. M. Abd-Rabboh ◽  
Abd El-Galil E. Amr ◽  
Elsayed A. Elsayed ◽  
Ahmed Y. A. Sayed ◽  
Ayman H. Kamel

Robust, reliable and cost-effective paper-based analytical device for potentiometric pholcodine (opiate derivative drug) ion sensing has been prepared and characterized.


2018 ◽  
Vol 42 (3) ◽  
pp. 2081-2088 ◽  
Author(s):  
Man Zhang ◽  
Wei Hong ◽  
Ruinan Xue ◽  
Lingzhi Li ◽  
Guanbo Huang ◽  
...  

At present, low-cost and efficient electrocatalysts for accelerating the oxygen reduction reaction in fuel cells are highly desired.


Sign in / Sign up

Export Citation Format

Share Document