scholarly journals Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 501 ◽  
Author(s):  
Yinming Li ◽  
Zhaojia Wang ◽  
Bo Zhang ◽  
Zhengang Liu ◽  
Tianxue Yang

In this study, Ni nanoparticles supported on renewable porous carbon were prepared using hydrochar as a carbon precursor via in situ formation and self-reduction. The structure properties of the prepared nanocatalysts were characterized by multiple techniques, including XRD, SEM, and HR-TEM, and the dry reforming of methane (DRM) performance of the nanocatalysts in terms of conversion efficiency and reactivity stability was evaluated. The results revealed that the Ni2+ was uniformly anchored on the surface of the hydrochar, and subsequently the Ni nanoparticles were well dispersed in the composite with a diameter of less than 8 nm and had a narrow particle size distribution at a temperature lower than 800 °C. With an increased temperature from 800 to 900 °C, the significant sintering and agglomeration of nickel particles and the transformation from amorphous carbon to graphitic structure were observed in the composite. The nanocatalysts prepared at a temperature of 700 °C (Ni@C-700) and 800 °C (Ni@C-800) exhibited a high reforming conversion rate and catalytic stability of CH4 by CO2 (around 52% for Ni@C-700 and 70% for Ni@C-800 after 800 min of run-time, respectively). As for the composite obtained at 900 (Ni@C-900), the highly graphitic degree was coupled with the significantly increased nickel particle size, and this resulted in a remarkably decreased conversion efficiency. The present study offers a valuable application of the hydrochar and a facile and green approach to prepare highly active and cost-efficient Ni nanoparticles on porous carbons towards the dry reforming of methane.

Author(s):  
Xinyu Chen ◽  
Wei Ding ◽  
Zhiwei Yao ◽  
Na Sun ◽  
Zhimeng Wang ◽  
...  

A Highly dispersed NiMoP phosphide catalyst with an average particle size of 9.1 nm and a carbon content of 53.5 wt% was firstly synthesized by carbothermal route using glucose as...


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohcin Akri ◽  
Shu Zhao ◽  
Xiaoyu Li ◽  
Ketao Zang ◽  
Adam F. Lee ◽  
...  

AbstractDry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.


2021 ◽  
Vol 281 ◽  
pp. 119459 ◽  
Author(s):  
André L.A. Marinho ◽  
Fabio S. Toniolo ◽  
Fabio B. Noronha ◽  
Florence Epron ◽  
Daniel Duprez ◽  
...  

2020 ◽  
Vol 268 ◽  
pp. 118387 ◽  
Author(s):  
André L.A. Marinho ◽  
Raimundo C. Rabelo-Neto ◽  
Florence Epron ◽  
Nicolas Bion ◽  
Fabio S. Toniolo ◽  
...  

Author(s):  
K.H. Ang ◽  
I. Alexandrou ◽  
N.D. Mathur ◽  
R. Lacerda ◽  
I.Y.Y. Bu ◽  
...  

An electric arc discharge in de-ionised water between a solid graphite cathode and an anode made by compressing Ni and C containing powders in a mass ratio of Ni:C = 7:3 was used here to prepare carbon encapsulated Ni nanoparticles in the form of powder suspended in water. The morphology of the produced material was analysed using high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The magnetic properties of the samples were determined using a Princeton vibrating sample magnetometer (VSM). Collection of the powder produced from different depths in the water container has proved to be an effective method for obtaining samples with narrow particle size distribution. Further material purification by dry NH4 plasma etching was used to remove the amorphous carbon content of the samples. XRD and HRTEM analysis showed that the material synthesized is fcc Ni particles with mean particle size ranging from 14 to 30 nm encapsulated in 2 to 5 graphitic cages. The data suggests that the process reported has the ability to mass-produce carbon encapsulated ferromagnetic nanoparticles with desired particle size distribution, and hence with controlled size-dependent magnetic properties.


2017 ◽  
Vol 41 (12) ◽  
pp. 4869-4878 ◽  
Author(s):  
Xiaoyuan Zhao ◽  
Meirong Lu ◽  
Hongrui Li ◽  
Jianhui Fang ◽  
Liyi Shi ◽  
...  

Ni nanoparticles in nanochannels of cerium-modified silica aerogels were in situ prepared for coking-resistant dry reforming of methane.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Luhui Wang ◽  
Rong Hu ◽  
Hui Liu ◽  
Qinhong Wei ◽  
Dandan Gong ◽  
...  

Ni nanoparticles encapsulated within La2O3 porous system (Ni@La2O3), the latter supported on SiO2 (Ni@La2O3)/SiO2), effectively inhibit carbon deposition for the dry reforming of methane. In this study, Ni@La2O3/SiO2 catalyst was prepared using a one-pot colloidal solution combustion method. Catalyst characterization demonstrates that the amorphous La2O3 layer was coated on SiO2, and small Ni nanoparticles were encapsulated within the layer of amorphous La2O3. During 50 h of dry reforming of methane at 700 °C and using a weight hourly space velocity (WHSV) of 120,000 mL gcat−1 h−1, the CH4 conversion obtained was maintained at 80%, which is near the equilibrium value, while that of impregnated Ni–La2O3/SiO2 catalyst decreased from 63% to 49%. The Ni@La2O3/SiO2 catalyst exhibited very good resistance to carbon deposition, and only 1.6 wt% carbon was formed on the Ni@La2O3/SiO2 catalyst after 50 h of reaction, far lower than that of 11.5 wt% deposited on the Ni–La2O3/SiO2 catalyst. This was mainly attributed to the encapsulated Ni nanoparticles in the amorphous La2O3 layer. In addition, after reaction at 700 °C for 80 h with a high WHSV of 600,000 mL gcat−1 h−1, the Ni@La2O3/SiO2 catalyst exhibited high CH4 conversion rate, ca. 10.10 mmol gNi−1 s−1. These findings outline a simple synthesis method to prepare supported encapsulated Ni within a metal oxide porous structure catalyst for the dry reforming of methane reaction.


ACS Catalysis ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 3349-3359 ◽  
Author(s):  
Zongyuan Liu ◽  
Feng Zhang ◽  
Ning Rui ◽  
Xing Li ◽  
Lili Lin ◽  
...  

2017 ◽  
Vol 313 ◽  
pp. 1370-1381 ◽  
Author(s):  
Mingzhi Wang ◽  
Qiulin Zhang ◽  
Tengfei Zhang ◽  
Yiru Wang ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document