scholarly journals Effect of Cu and Cs in the β-Mo2C System for CO2 Hydrogenation to Methanol

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1213 ◽  
Author(s):  
Ana Belén Dongil ◽  
Qi Zhang ◽  
Laura Pastor-Pérez ◽  
Tomás Ramírez-Reina ◽  
Antonio Guerrero-Ruiz ◽  
...  

Mitigation of anthropogenic CO2 emissions possess a major global challenge for modern societies. Herein, catalytic solutions are meant to play a key role. Among the different catalysts for CO2 conversion, Cu supported molybdenum carbide is receiving increasing attention. Hence, in the present communication, we show the activity, selectivity and stability of fresh-prepared β-Mo2C catalysts and compare the results with those of Cu/Mo2C, Cs/Mo2C and Cu/Cs/Mo2C in CO2 hydrogenation reactions. The results show that all the catalysts were active, and the main reaction product was methanol. Copper, cesium and molybdenum interaction is observed, and cesium promoted the formation of metallic Mo on the fresh catalyst. The incorporation of copper is positive and improves the activity and selectivity to methanol. Additionally, the addition of cesium favored the formation of Mo0 phase, which for the catalysts Cs/Mo2C seemed to be detrimental for the conversion and selectivity. Moreover, the catalysts promoted by copper and/or cesium underwent redox surface transformations during the reaction, these were more obvious for cesium doped catalysts, which diminished their catalytic performance.

Author(s):  
Ana Belén Dongil ◽  
Qi zhang ◽  
Laura Pastor-Pérez ◽  
Tomás Ramírez-Reina ◽  
Antonio Guerrero-Ruiz ◽  
...  

Mitigation of Anthropogenic CO2 emissions possess a major global challenge for modern societies. Herein catalytic solutions are meant to play a key role. Among the different catalysts for CO2 conversion Cu supported on molybdenum carbide is receiving increasing attention. Hence, in the present communication we show the activity, selectivity and stability of fresh-prepared -Mo2C catalysts and compare the results with those of Cu/Mo2C, Cs/Mo2C and Cu/Cs/Mo2C in CO2 hydrogenation reactions. The results showed that all the catalysts were active and the main reaction product was methanol. The results showed that copper-cesium and molybdenum effectively interact and that cesium promoted the formation of metallic Mo. While, the incorporation of copper is positive to improve the activity and selectivity to methanol, the presence of Mo0 phase was detrimental for the conversion and selectivity. Moreover, the catalysts promoted by cesium underwent redox surface transformations during the reaction that diminished their catalytic performance. The molybdenum phase in Cu/Mo2C changes during reaction leading to metallic molybdenum and tuning the catalytic activity.


1995 ◽  
Vol 21 (6) ◽  
pp. 1015-1023 ◽  
Author(s):  
Toshihiro Miyao ◽  
Masakuni Matsuoka ◽  
Isao Shishikura ◽  
Masatoshi Nagai

2016 ◽  
Vol 6 (10) ◽  
pp. 3468-3475 ◽  
Author(s):  
Benjamin Frank ◽  
Zai-Lai Xie ◽  
Klaus Friedel Ortega ◽  
Michael Scherzer ◽  
Robert Schlögl ◽  
...  

Surface modification of a CNT support with S- or N-containing functionalities results in significant modification of the catalytic performance of supported molybdenum carbide in the steam reforming of methanol.


ACS Catalysis ◽  
2021 ◽  
pp. 9679-9687
Author(s):  
Marc Figueras ◽  
Ramón A. Gutiérrez ◽  
Francesc Viñes ◽  
Pedro J. Ramírez ◽  
José A. Rodriguez ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 50
Author(s):  
Xing Liu

Unlike the usual method of COx (x = 1, 2) hydrogenation using H2 directly, H2S and HSiSH (silicon-activated H2S) were selected as alternative hydrogen sources in this study for the COx hydrogenation reactions. Our results suggest that it is kinetically infeasible for hydrogen in the form of H2S to transfer to COx at low temperatures. However, when HSiSH is employed instead, the title reaction can be achieved. For this approach, the activation of CO2 is initiated by its interaction with the HSiSH molecule, a reactive species with both a hydridic Hδ− and protonic Hδ+. These active hydrogens are responsible for the successive C-end and O-end activations of CO2 and hence the final product (HCOOH). This finding represents a good example of an indirect hydrogen source used in CO2 hydrogenation through reactivity tuned by silicon incorporation, and thus the underlying mechanism will be valuable for the design of similar reactions.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 942
Author(s):  
Anastasia Maria Moschovi ◽  
Mattia Giuliano ◽  
Marios Kourtelesis ◽  
Giovanna Nicol ◽  
Ekaterini Polyzou ◽  
...  

The production of new automotive catalytic converters requires the increase of the quantity of Platinum Group Metals in order to deal with the strict emission standards that are imposed for vehicles. The use of PGMs coming from the recycling of spent autocatalysts could greatly reduce the cost of catalyst production for the automotive industry. This paper presents the synthesis of novel automotive Three-Way Catalysts (PLTWC, Pd/Rh = 55/5, 60 gPGMs/ft3) and diesel oxidation catalysts (PLDOC, Pt/Pd = 3/1, 110 gPGMs/ft3) from recovered PGMs, without further refinement steps. The catalysts were characterized and evaluated in terms of activity in comparison with benchmark catalysts produced using commercial metal precursors. The small-scale catalytic monoliths were successfully synthesized as evidenced by the characterization of the samples with XRF analysis, optical microscopy, and N2 physisorption. Hydrothermal ageing of the catalysts was performed and led to a significant decrease of the specific surface area of all catalysts (recycled and benchmarks) due to sintering of the support material and metal particles. The TWCs were studied for their activity in CO and unburned hydrocarbon oxidation reactions under a slightly lean environment of the gas mixture (λ > 1) as well as for their ability to reduce NOx under a slightly rich gas mixture (λ < 1). Recycled TWC fresh catalyst presented the best performance amongst the catalysts studied for the abatement of all pollutant gases, and they also showed the highest Oxygen Storage Capacity value. Moreover, comparing the aged samples, the catalyst produced from recycled PGMs presented higher activity than the one synthesized with the use of commercial PGM metal precursors. The results obtained for the DOC catalysts showed that the aged PLDOC catalyst outperformed both the fresh catalyst and the aged DOC catalyst prepared with the use of commercial metal precursors for the oxidation of CO, hydrocarbons, and NO. The latter reveals the effect of the presence of several impurities in the recovered PGMs solutions.


ChemSusChem ◽  
2012 ◽  
Vol 5 (4) ◽  
pp. 727-733 ◽  
Author(s):  
Junxing Han ◽  
Jinzhao Duan ◽  
Ping Chen ◽  
Hui Lou ◽  
Xiaoming Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document