scholarly journals Improvement of Alkali Metal Resistance for NH3-SCR Catalyst Cu/SSZ-13: Tune the Crystal Size

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 979
Author(s):  
Zexiang Chen ◽  
Meiqing Shen ◽  
Chen Wang ◽  
Jianqiang Wang ◽  
Jun Wang ◽  
...  

To improve the alkali metal resistance of commercial catalyst Cu/SSZ-13 for ammonia selective catalytic reduction (NH3-SCR) reaction, a simple method to synthesize Cu/SSZ-13 with a core–shell like structure was developed. Compared with smaller-sized counterparts, Cu/SSZ-13 with a crystal size of 2.3 μm exhibited excellent resistance to Na poisoning. To reveal the influence of the crystal size on Cu/SSZ-13, physical structure characterization (XRD, BET, SEM, NMR) and chemical acidic distribution (H2-TPR, UV-Vis, Diethylamine-TPD, pyridine-DRIFTs, EDS) were investigated. It was found that the larger the crystal size of the molecular sieve, the more Cu is distributed in the crystal core, and the less likely it was to be replaced by Na to generate CuO. Therefore, a 2.3 μm sized Cu/SSZ-13 well-controlled the reactivity of the side reaction NH3 oxidation and the generation of N2O. The result was helpful to guide the extension of the service life of Cu/SSZ-13.

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 506 ◽  
Author(s):  
Ana Palčić ◽  
Paolo Cleto Bruzzese ◽  
Kamila Pyra ◽  
Marko Bertmer ◽  
Kinga Góra-Marek ◽  
...  

Nanosized SSZ-13 was synthesized hydrothermally by applying N,N,N-trimethyl-1-adamantammonium hydroxide (TMAdaOH) as a structure-directing agent. In the next step, the quantity of TMAdaOH in the initial synthesis mixture of SSZ-13 was reduced by half. Furthermore, we varied the sodium hydroxide concentration. After ion-exchange with copper ions (Cu2+ and Cu+), the Cu-SSZ-13 catalysts were characterized to explore their framework composition (XRD, solid-state NMR, ICP-OES), texture (N2-sorption, SEM) and acid/redox properties (FT-IR, TPR-H2, DR UV-Vis, EPR). Finally, the materials were tested in the selective catalytic reduction of NOx with ammonia (NH3-SCR). The main difference between the Cu-SSZ-13 catalysts was the number of Cu2+ in the double six-membered ring (6MRs). Such copper species contribute to a high NH3-SCR activity. Nevertheless, all materials show comparable activity in NH3-SCR up to 350 °C. Above 350 °C, NO conversion decreased for Cu-SSZ-13(2–4) due to side reaction of NH3 oxidation.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 929 ◽  
Author(s):  
Auvray ◽  
Mihai ◽  
Lundberg ◽  
Olsson

Lean nitric oxide (NOx)-trap (LNT) and selective catalytic reduction (SCR) are efficient systems for the abatement of NOx. The combination of LNT and SCR catalysts improves overall NOx removal, but there is a risk that the SCR catalyst will be exposed to high temperatures and rich exhaust during the LNTs sulfur regeneration. Therefore, the effect of exposure to various rich conditions and temperatures on the subsequent SCR activity of a Cu-exchanged chabazite catalyst was studied. CO, H2, C3H6, and the combination of CO + H2 were used to simulate rich conditions. Aging was performed at 800 °C, 700 °C, and, in the case of CO, 600 °C, in a plug-flow reactor. Investigation of the nature of Cu sites was performed with NH3-temperature-programed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) of probe molecules (NH3 and NO). The combination of CO and H2 was especially detrimental to SCR activity and to NH3 oxidation. Rich aging with low reductant concentrations resulted in a significantly larger deactivation compared to lean conditions. Aging in CO at 800 °C caused SCR deactivation but promoted high-temperature NH3 oxidation. Rich conditions greatly enhanced the loss of Brønsted and Lewis acid sites at 800 °C, indicating dealumination and Cu migration. However, at 700 °C, mainly Brønsted sites disappeared during aging. DRIFT spectroscopy analysis revealed that CO aging modified the Cu2+/CuOH+ ratio in favor of the monovalent CuOH+ species, as opposed to lean aging. To summarize, we propose that the reason for the increased deactivation observed for mild rich conditions is the transformation of the Cu species from Z2Cu to ZCuOH, possibly in combination with the formation of Cu clusters.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 321 ◽  
Author(s):  
Tuan Doan ◽  
Phong Dam ◽  
Khang Nguyen ◽  
Thanh Huyen Vuong ◽  
Minh Thang Le ◽  
...  

SAPO-34 was prepared with a mixture of three templates containing triethylamine, tetraethylammonium hydroxide, and morpholine, which leads to unique properties for support and production cost reduction. Meanwhile, Cu/SAPO-34, Fe/SAPO-34, and Cu-Fe/SAPO-34 were prepared through the ion-exchanged method in aqueous solution and used for selective catalytic reduction (SCR) of NOx with NH3. The physical structure and original crystal of SAPO-34 are maintained in the catalysts. Cu-Fe/SAPO-34 catalysts exhibit high NOx conversion in a broad temperature window, even in the presence of H2O. The physicochemical properties of synthesized samples were further characterized by various methods, including XRD, FE-SEM, EDS, N2 adsorption-desorption isotherms, UV-Vis-DRS spectroscopy, NH3-TPD, H2-TPR, and EPR. The best catalyst, 3Cu-1Fe/SAPO-34 exhibited high NOx conversion (> 90%) in a wide temperature window of 250–600 °C, even in the presence of H2O. In comparison with mono-metallic samples, the 3Cu-1Fe/SAPO-34 catalyst had more isolated Cu2+ ions and additional oligomeric Fe3+ active sites, which mainly contributed to the higher capacity of NH3 and NOx adsorption by the enhancement of the number of acid sites as well as its greater reducibility. Therefore, this synergistic effect between iron and copper in the 3Cu-1Fe/SAPO-34 catalyst prompted higher catalytic performance in more extensive temperature as well as hydrothermal stability after iron incorporation.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 734 ◽  
Author(s):  
Aneta Święs ◽  
Andrzej Kowalczyk ◽  
Małgorzata Rutkowska ◽  
Urbano Díaz ◽  
Antonio E. Palomares ◽  
...  

The main goal of the study was the development of effective catalysts for the low-temperature selective catalytic reduction of NO with ammonia (NH3-SCR), based on ferrierite (FER) and its delaminated (ITQ-6) and silica-intercalated (ITQ-36) forms modified with copper. The copper exchange zeolitic samples, with the intended framework Si/Al ratio of 30 and 50, were synthetized and characterized with respect to their chemical composition (ICP-OES), structure (XRD), texture (low-temperature N2 adsorption), form and aggregation of deposited copper species (UV-vis-DRS), surface acidity (NH3-TPD) and reducibility (H2-TPR). The samples of the Cu-ITQ-6 and Cu-ITQ-36 series were found to be significantly more active NH3-SCR catalysts compared to Cu-FER. The activity of these catalysts in low-temperature NH3-SCR was assigned to the significant contribution of highly dispersed copper species (monomeric cations and small oligomeric species) catalytically active in the oxidation of NO to NO2, which is necessary for fast-SCR. The zeolitic catalysts, with the higher framework alumina content, were more effective in high-temperature NH3-SCR due to their limited catalytic activity in the side reaction of ammonia oxidation.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Guangying Fu ◽  
Junwen Chen ◽  
Yuqian Liang ◽  
Rui Li ◽  
Xiaobo Yang ◽  
...  

The role of Cu species in Cu ion-exchanged IM-5 zeolite (Cu-IM-5) regarding the performance in selective catalytic reduction (SCR) of NOx with NH3 (NH3-SCR) and the reaction mechanism was studied. Based on H2 temperature-programmed reduction (H2-TPR) and electron paramagnetic resonance (EPR) results, Cu–O–Cu and isolated Cu species are suggested as main Cu species existing in Cu-IM-5 and are active for SCR reaction. Cu–O–Cu species show a good NH3-SCR activity at temperatures below 250 °C, whereas their NH3 oxidation activity at higher temperatures hinders the SCR performance. At low temperatures, NH4NO3 and NH4NO2 are key reaction intermediates. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) suggests a mixed Eley–Rideal (E–R) and Langmuir–Hinshelwood (L–H) mechanism over Cu-IM-5 at low temperatures.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 265 ◽  
Author(s):  
Tsungyu Lee ◽  
Hsunling Bai

The byproducts of ammonia-selective catalytic reduction (NH3-SCR) process over MnFe/TiO2 catalysts under the conditions of both with and without SO2 poisoning were analyzed. In addition to the NH3-SCR reaction, the NH3 oxidation and the NO oxidation reactions were also evaluated at temperatures of 100–300 °C to clarify the reactions occurred during the SCR process. The results indicated that major byproducts for the NH3 oxidation and NO oxidation tests were N2O and NO2, respectively, and their concentrations increased as the reaction temperature increased. For the NH3-SCR test without the presence of SO2, it revealed that N2O was majorly from the NH3-SCR reaction instead of from NH3 oxidation reaction. The byproducts of N2O and NO2 for the NH3-SCR reaction also increased after increasing the reaction temperature, which caused the decreasing of N2-selectivity and NO consumption. For the NH3-SCR test with SO2 at 150 °C, there were two decay stages during SO2 poisoning. The first decay was due to a certain amount of NH3 preferably reacted with SO2 instead of with NO or O2. Then the catalysts were accumulated with metal sulfates and ammonium salts, which caused the second decay of NO conversion. The effluent N2O increased as poisoning time increased, which was majorly from oxidation of unreacted NH3. On the other hand, for the NH3-SCR test with SO2 at 300 °C, the NO conversion was not decreased after increasing the poisoning time, but the N2O byproduct concentration was high. However, the SO2 led to the formation of metal sulfates, which might inhibit NO oxidation reactions and cause the concentration of N2O gradually decreased as well as the N2-selectivity increased.


2020 ◽  
Vol 16 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Yao Feng ◽  
Ran Wang ◽  
Juanjuan Yin ◽  
Fangke Zhan ◽  
Kaiyue Chen ◽  
...  

Background: 4-nitrophenol (4-NP) is one of the pollutants in sewage and harmful to human health and the environment. Cu is a non-noble metal with catalytic reduction effect on nitro compounds, and.has the advantages of simple preparation, abundant reserves, and low price. Carbon nanotubes (CNT) are widely used for substrate due to their excellent mechanical stability and high surface area. In this study, a simple method to prepare CNT-Cu2O by controlling different reaction time was reported. The prepared nanocomposites were used to catalyze 4-NP. Methods: CNTs and CuCl2 solution were put into a beaker, and then ascorbic acid and NaOH were added while continuously stirring. The reaction was carried out for a sufficiently long period of time at 60°C. The prepared samples were dried in a vacuum at 50°C for 48 h after washing with ethyl alcohol and deionized water. Results: Nanostructures of these composites were characterized by scanning electron microscope and transmission electron microscopy techniques, and the results at a magnification of 200 nanometers showed that Cu2O was distributed on the surface of the CNTs. In addition, X-ray diffraction was performed to further confirm the formation of Cu2O nanoparticles. The results of ultraviolet spectrophotometry showed that the catalytic effect of the compound on 4-NP was obvious. Conclusions: CNTs acted as a huge template for loading Cu2O nanoparticles, which could improve the stability and cycle performance of Cu2O. The formation of nanoparticles was greatly affected by temperature and the appropriate concentration, showing great reducibility for the 4-NP reduction reaction.


2019 ◽  
Vol 9 (3) ◽  
pp. 718-730 ◽  
Author(s):  
Jian-Wen Shi ◽  
Yao Wang ◽  
Ruibin Duan ◽  
Chen Gao ◽  
Baorui Wang ◽  
...  

Non-manganese-based metal oxides are promising catalysts for the NH3-SCR (selective catalytic reduction) of NOx at low temperatures.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Katarzyna Świrk ◽  
Ye Wang ◽  
Changwei Hu ◽  
Li Li ◽  
Patrick Da Costa ◽  
...  

Copper and iron promoted ZrO2 catalysts were prepared by one-pot synthesis using urea. The studied catalysts were characterized by XRD, N2 physisorption, XPS, temperature-programmed desorption of NH3 (NH3-TPD), and tested by the selective catalytic reduction by ammonia (NH3-SCR) of NO in the absence and presence of water vapor, under the experimental conditions representative of exhaust gases from stationary sources. The influence of SO2 on catalytic performance was also investigated. Among the studied catalysts, the Fe-Zr sample showed the most promising results in NH3-SCR, being active and highly selective to N2. The addition of SO2 markedly improved NO and NH3 conversions during NH3-SCR in the presence of H2O. The improvement in acidic surface properties is believed to be the cause.


Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121445
Author(s):  
Running Kang ◽  
Junyao He ◽  
Feng Bin ◽  
Baojuan Dou ◽  
Qinglan Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document