scholarly journals Immobilization-Stabilization of β-Glucosidase for Implementation of Intensified Hydrolysis of Cellobiose in Continuous Flow Reactors

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Celia Alvarez-Gonzalez ◽  
Victoria E. Santos ◽  
Miguel Ladero ◽  
Juan M. Bolivar

Cellulose saccharification to glucose is an operation of paramount importance in the bioenergy sector and the chemical and food industries, while glucose is a critical platform chemical in the integrated biorefinery. Among the cellulose degrading enzymes, β-glucosidases are responsible for cellobiose hydrolysis, the final step in cellulose saccharification, which is usually the critical bottleneck for the whole cellulose saccharification process. The design of very active and stable β-glucosidase-based biocatalysts is a key strategy to implement an efficient saccharification process. Enzyme immobilization and reaction engineering are two fundamental tools for its understanding and implementation. Here, we have designed an immobilized-stabilized solid-supported β−glucosidase based on the glyoxyl immobilization chemistry applied in porous solid particles. The biocatalyst was stable at operational temperature and highly active, which allowed us to implement 25 °C as working temperature with a catalyst productivity of 109 mmol/min/gsupport. Cellobiose degradation was implemented in discontinuous stirred tank reactors, following which a simplified kinetic model was applied to assess the process limitations due to substrate and product inhibition. Finally, the reactive process was driven in a continuous flow fixed-bed reactor, achieving reaction intensification under mild operation conditions, reaching full cellobiose conversion of 34 g/L in a reaction time span of 20 min.

1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2012 ◽  
Vol 14 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Charlotte Wiles ◽  
Paul Watts

Author(s):  
Xabier Lopez de Pariza ◽  
Tim Erdmann ◽  
Pedro L. Arrechea ◽  
Leron Perez ◽  
Charles Dausse ◽  
...  

2021 ◽  
Vol 25 ◽  
Author(s):  
Alexander Leslie ◽  
Angel Maria Joseph ◽  
Marcus Baumann

: An overview of the current uptake of continuous flow techniques for various functional group interconversion reactions is presented. Besides highlighting a variety of prominent examples and their main features, this review provides insights into specific reaction classes, such as oxidations, reductions, rearrangements as well as different C-H functionalization processes. While this review can only include key examples from the last decade, the reader will find a solid foundation of important transformations along with further references to inform and appreciate the opportunities arising from modern synthesis technologies such as flow synthesis.


2017 ◽  
Vol 8 (42) ◽  
pp. 6496-6505 ◽  
Author(s):  
Maarten Rubens ◽  
Phanumat Latsrisaeng ◽  
Tanja Junkers

Visible-light induced photoiniferter polymerization in continuous flow reactors is very efficient in yielding low dispersity methacrylate block copolymers.


2017 ◽  
Vol 13 ◽  
pp. 120-126 ◽  
Author(s):  
Christian H Hornung ◽  
Miguel Á Álvarez-Diéguez ◽  
Thomas M Kohl ◽  
John Tsanaktsidis

This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times.


2017 ◽  
Vol 7 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Ajay A. Sathe ◽  
Anirudh M. K. Nambiar ◽  
Robert M. Rioux

The direct catalytic conversion of olefins into cyclic carbonates using peroxide and carbon dioxide is demonstrated using continuous flow reactors.


Sign in / Sign up

Export Citation Format

Share Document