scholarly journals Maximizing Anhydrosugar Production from Fast Pyrolysis of Eucalyptus Using Sulfuric Acid as an Ash Catalyst Inhibitor

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 609 ◽  
Author(s):  
Dongyan Zhang ◽  
Yuyang Fan ◽  
Anqing Zheng ◽  
Zengli Zhao ◽  
Fengyun Wang ◽  
...  

Anhydrosugars, such as levoglucosan (LG), are high value-added chemicals which are mainly derived from fast pyrolysis of pure cellulose. However, fast pyrolysis of raw lignocellulosic biomass usually produces a very low amount of levoglucosan, since alkali and alkaline earth metals (AAEM) present in the ash can serve as the catalysts to inhibit the formation of levoglucosan through accelerating the pyranose ring-opening reactions. In this study, eucalyptus was impregnated with H2SO4 solutions with varying concentrations (0.25–1.25%). The characteristics of ash derived from raw and H2SO4-impregnated eucalyptus were characterized by X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD). The pyrolysis behaviors of raw and H2SO4-impregnated eucalyptus were performed on the thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TG analysis demonstrated that the H2SO4-impregnated eucalyptus produced less char than raw eucalyptus. Py-GC/MS analysis showed that even small amounts of H2SO4 can obviously improve the production of anhydrosugars and phenols and suppressed the formation of carboxylic acids, aldehydes, and ketones from fast pyrolysis of eucalyptus. The rank order of levoglucosan yield from raw and impregnated eucalyptus was raw < 1.25% H2SO4 < 1% H2SO4 < 0.75% H2SO4 < 0.25% H2SO4 < 0.5% H2SO4. The maximum yield of levoglucosan (21.3%) was obtained by fast pyrolysis of eucalyptus impregnated with 0.5% H2SO4, which was close to its theoretical yield based on the cellulose content. The results could be ascribed to that H2SO4 can react with AAEM (e.g., Na, K, Ca, and Mg) and lignin to form lignosulfonate, thus acting as an inhibitor to suppress the catalytic effects of AAEM during fast pyrolysis of eucalyptus.

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3474 ◽  
Author(s):  
Yichen Liu ◽  
James J. Leahy ◽  
Jacek Grams ◽  
Witold Kwapinski

Fast pyrolysis of Miscanthus, its hydrolysis residue and lignin were carried with a pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) followed by online vapor catalytic upgrading with sulfated ZrO2, sulfated TiO2 and sulfated 60 wt.% ZrO2-TiO2. The most evident influence of the catalyst on the vapor phase composition was observed for aromatic hydrocarbons, light phenols and heavy phenols. A larger amount of light phenols was detected, especially when 60 wt.% ZrO2-TiO2 was present. Thus, a lower average molecular weight and lower viscosity of bio-oil could be obtained with this catalyst. Pyrolysis was also performed at different pressures of hydrogen. The pressure of H2 has a great effect on the overall yield and the composition of biomass vapors. The peak area percentages of both aromatic hydrocarbons and cyclo-alkanes are enhanced with the increasing of H2 pressure. The overall yields are higher with the addition of either H2 or sulfated catalysts. This is beneficial as phenols are valuable chemicals, thus, increasing the value of bio-oil. The results show that the hydrolysis residue has the potential to become a resource for phenol production.


2020 ◽  
Vol 14 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Fanjun Meng ◽  
Qiaoyan Shang ◽  
Dongliang Hua ◽  
Lei Chen ◽  
Laizhi Sun ◽  
...  

Seed-induced synthesis of ZSM-5 aggregates was carried out without organic templates. The prepared ZSM-5 aggregates were used upgrading polar sawdust-derived pyrolytic vapors for the selective production of naphthalene and alkyl naphthalene. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were conducted to analyze the pyrolytic product distribution and evaluate the catalyst performance. Due to the mesopores and proper acidities of ZSM-5 aggregates, the yield of naphthalene and methylnaphthalene over ZSM-5 aggregates were 36.0 and 123.7 mg/g, which were 2.7 and 2.6 times of those respectively over the commercial ZSM-5. The total selectivities of naphthalene and alkyl naphthalene could reach 61.56%.


Author(s):  
Huachuan Zhang ◽  
Wu Gu ◽  
Rongqi Zhu ◽  
Qichao Ran ◽  
Yi Gu

AbstractCarbon materials should have specific centers for its functionalities. In this study, the specific centers of polybenzoxazine carbides were studied for the first time. Three classical benzoxazine monomers were chose as the object. The transformation of nitrogen configuration of polybenzoxazines carbides was characterized via pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and X-ray photoelectron spectroscopy (XPS). The results showed that the tertiary amine nitrogen converted to pyridinic nitrogen and pyrrolic nitrogen incorporated in graphene residuals during the carbonization, which were the specific centers for the functionality.


2013 ◽  
Vol 805-806 ◽  
pp. 186-190
Author(s):  
Hang Tao Liao ◽  
Yang Zhang ◽  
Qiang Lu ◽  
Chang Qing Dong

Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed for the fast pyrolysis of glucose, cellubiose and cellulose in this study. The pyrolytic products from the three glucose-based materials were determined and compared to reveal the distribution differences. The results indicated that fast pyrolysis of the three materials obtained similar pyrolytic products, including the anhydrosugars, furans, linear carbonyls and cyclopentanones, but the distribution of the pyrolytic products differed from each other. The cellulose formed more anhydrosugars, but less carbonyls and furans than the glucose and cellubiose. The glycosidic bond of the cellubiose and cellulose would favor the pyrolytic depolymerization reactions to form various anhydrosugars, while inhibit the pyrolytic fragmentation reactions to produce linear carbonyls.


2014 ◽  
Vol 541-542 ◽  
pp. 190-194 ◽  
Author(s):  
Zhi Bo Zhang ◽  
Xiao Ning Ye ◽  
Qiang Lu ◽  
Chang Qing Dong ◽  
Yong Qian Liu

Activated carbon (AC) was reported as a promising catalyst to selectively produce phenolic compounds from biomass using the micro-wave assisted catalytic pyrolysis technique. In order to evaluate the catalytic performance of the AC under the traditional fast pyrolysis process, analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was applied for the catalytic fast pyrolysis of biomass mixed with the AC. Polar wood was selected as the feedstock, and experiments were conducted to reveal the AC-catalyzed poplar wood pyrolysis behavior and product distribution. The results indicated that the AC was also effective for the phenolics production in the traditional fast pyrolysis process at 350 °C. It could promote the formation of phenolic compounds, and inhibit most of the other pyrolytic products. The maximal phenolics yield was obtained at the biomass to catalyst ratio of 1:4, with the peak area% over 50%.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Elena Basso ◽  
Federica Pozzi ◽  
Julia Day ◽  
Linda Borsch

Abstract Bertoldo di Giovanni (ca. 1440–1491) was the primary sculptor and medal worker for Lorenzo the Magnificent (1449–1492). Despite being one of the most prominent Italian Renaissance artists working in Florence, little is known about his workshop and practice. The Frick Collection, New York, owns a Shield Bearer, one of a small number of bronze statuettes attributed to Bertoldo predominantly based on stylistic grounds. This article presents the results obtained from the scientific analysis of The Frick statuette, including a detailed technical characterization of the casting alloy, gilding, solder, organic coatings, and other later alterations. An array of analytical techniques was employed, including X-radiography, micro- and portable X-ray fluorescence (μXRF and pXRF) spectroscopies, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), Raman and Fourier-transform infrared (FTIR) spectroscopies, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). This work supported a larger technical study of Bertoldo’s statuettes and reliefs related to an exhibition organized by The Frick, which brought together a select group of medals, as well as eleven bronzes ascribed to the artist, including the museum’s statuette. Close collaboration between conservators, curators, and scientists was critical throughout the study of the Shield Bearer, which also included extensive visual examination of the object in order to understand details of manufacture, identify sampling sites, and interpret the collected data. This study confirmed that The Frick figure was cast from the same brass alloy as a second very similar Shield Bearer in the Liechtenstein Collection, Vienna, suggesting that the two are a pendant pair that was likely cast simultaneously. In addition, analysis supported the assertion that the copper base on The Frick sculpture is original and assisted in identifying later alterations in both works. This focused research has expanded the current knowledge of the sculptor’s materials and methods, enabling scholars to better contextualize his artistic production within the framework of Italian Renaissance sculpture.


Sign in / Sign up

Export Citation Format

Share Document