scholarly journals Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 230 ◽  
Author(s):  
María Rojas-Cervantes ◽  
Eva Castillejos

Advanced oxidation processes (AOPs), based on the formation of highly reactive radicals are able to degrade many organic contaminants present in effluent water. In the heterogeneous AOPS the presence of a solid which acts as catalyst in combination with other systems (O3, H2O2, light) is required. Among the different materials that can catalyse these processes, perovskites are found to be very promising, because they are highly stable and exhibit a high mobility of network oxygen with the possibility of forming vacancies and to stabilize unusual oxidation states of metals. In this review, we show the fundaments of different kinds of AOPs and the application of perovskite type oxides in them, classified attending to the oxidant used, ozone, H2O2 or peroxymonosulfate, alone or in combination with other systems. The photocatalytic oxidation, consisting in the activation of the perovskite by irradiation with ultraviolet or visible light is also revised.

1992 ◽  
Vol 27 (1) ◽  
pp. 69-96 ◽  
Author(s):  
William J. Cooper ◽  
Michael G. Nickelsen ◽  
David E. Meacham ◽  
Thomas D. Waite ◽  
Charles N. Kurucz

Abstract Advanced oxidation processes for the removal and destruction of hazardous organic chemicals in water and wastewater is a research area of increasing interest. Advanced oxidation processes generally consider the hydroxyl radical, OH-, the major reactive transient species. A novel process under development, utilizing high energy electrons, extends this concept to include the simultaneous formation of approximately equal concentrations of oxidizing and reducing species. Irradiation of aqueous solutions results in the formation of the aqueous electron, e−aq, hydrogen atoms, H-, and OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solution. This paper presents data on the removal of six common organic contaminants that have been studied at the Electron Beam Research Facility. The removal and the factors affecting removal were determined. This study focuses on halogenated ethenes, benzene and substituted benzenes. Removal is described in waters of different quality, including potable water, and raw and secondary wastewater. Removal efficiencies ranged from 85 to >99% and varied with water quality, solute concentration, dose and compound.


Author(s):  
Weihua Sun ◽  
Lujun Chen ◽  
Jianlong Wang

AbstractAdvanced oxidation processes (AOPs) constitute a promising technology to treat wastewater containing organic pollutants that are not easily biodegradable. They have received increasing attention in the research and development of wastewater treatment technologies in recent decades for their removal or degradation of recalcitrant pollutants or as pretreatments to convert pollutants into smaller compounds, which can be treated using conventional biological methods. Polyvinyl alcohol (PVA) is a typical refractory organic pollutant. It has received special attention due to its low biodegradability and the large amount of PVA-containing wastewater discharged from textile and paper mills. This review focuses on PVA removal and PVA wastewater pretreatment by AOPs, which include ozonation, Fenton oxidation, persulfate oxidation, ultrasound cavitation, ionizing radiation, photocatalytic oxidation, wet air oxidation and electrochemical oxidation. The mechanistic degradation pathways of PVA by AOPs are also discussed. In addition, a new classification of AOPs is applied for PVA treatment.


Author(s):  
James R. Bolton ◽  
Keith G. Bircher ◽  
William Tumas ◽  
Chadwick A. Tolman

AbstractAdvanced oxidation processes (AOPs), which involve the in-situ generation of highly potent chemical oxidants such as the hydroxyl radical (•OH), have recently emerged as an important class of technologies for accelerating the oxidation and hence destruction of a wide range of organic contaminants in polluted water and air. We propose generally applicable standard figures-of-merit for comparing these waste treatment technologies. These figures-of-merit are based on electrical energy consumption within two phenomenological kinetic order regimes: one for high contaminant concentrations (electrical energy per mass, EE/M) and one for low concentrations (electrical energy per order of magnitude per m


2014 ◽  
Vol 65 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Maja Plahuta ◽  
Tatjana Tišler ◽  
Mihael Jožef Toman ◽  
Albin Pintar

Summary Bisphenol A (BPA) is a well-known endocrine disruptor with adverse oestrogen-like effects eliciting adverse effects in humans and wildlife. For this reason it is necessary to set up an efficient removal of BPA from wastewaters, before they are discharged into surface waters. The aim of this study was to compare the efficiency of BPA removal from aqueous samples with photolytic, photocatalytic, and UV/H2O2 oxidation. BPA solutions were illuminated with different bulbs (halogen; 17 W UV, 254 nm; and 150 W UV, 365 nm) with or without the TiO2 P-25 catalyst or H2O2 (to accelerate degradation). Acute toxicity and oestrogenic activity of treated samples were determined using luminescent bacteria (Vibrio fischeri), water fleas (Daphnia magna), zebrafish embryos (Danio rerio), and Yeast Estrogen Screen (YES) assay with genetically modified yeast Saccharomyces cerevisiae. The results confirmed that BPA is toxic and oestrogenically active. Chemical analysis showed a reduction of BPA levels after photolytic treatment and 100 % conversion of BPA by photocatalytic and UV/H2O2 oxidation. The toxicity and oestrogenic activity of BPA were largely reduced in photolytically treated samples. Photocatalytic oxidation, however, either did not reduce BPA toxic and oestrogenic effects or even increased them in comparison with the baseline, untreated BPA solution. Our findings suggest that chemical analysis is not sufficient to determine the efficiency of advanced oxidation processes in removing pollutants from water and needs to be complemented with biological tests.


Sign in / Sign up

Export Citation Format

Share Document