scholarly journals Synthesis and Evaluation of Copper-Supported Titanium Oxide Nanotubes as Electrocatalyst for the Electrochemical Reduction of Carbon Oxide to Organics

Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 298 ◽  
Author(s):  
SK Hossain ◽  
Junaid Saleem ◽  
SleemUr Rahman ◽  
Syed Zaidi ◽  
Gordon McKay ◽  
...  

Carbon dioxide (CO2) is considered as the prime reason for the global warming effect and one of the useful ways to transform it into an array of valuable products is through electrochemical reduction of CO2 (ERC). This process requires an efficient electrocatalyst with high faradaic efficiency at low overpotential and enhanced reaction rate. Herein, we report an innovative way of reducing CO2 using copper-metal supported on titanium oxide nanotubes (TNT) electrocatalysts. The TNT support material was synthesized using alkaline hydrothermal process with Degussa (P-25) as a starting material. Copper nanoparticles were anchored on the TNT by homogeneous deposition-precipitation method (HDP) with urea as precipitating agent. The prepared catalysts were tested in a home-made H-cell with 0.5 M NaHCO3 aqueous solution in order to examine their activity for ERC and the optimum copper loading. Continuous gas-phase ERC was carried out in a solid polymer electrolyte (SPE) reactor. The 10% Cu/TNT catalysts were employed in the gas diffusion layer (GDL) on the cathode side with Pt-Ru/C on the anode side. Faradaic efficiencies for the three major products namely methanol, methane, and CO were found to be 4%, 3%, and 10%, respectively at −2.5 V with an overall current density of 120 mA/cm2. The addition of TNT significantly increased the catalytic activity of electrocatalyst for ERC. It is mainly attributed to their better stability towards oxidation, increased CO2 adsorption capacity and stabilization of the reaction intermediate, layered titanates, and larger surface area (400 m2/g) as compared with other support materials. Considering the low cost of TNT, it is anticipated that TNT support electrocatalyst for ECR will gain popularity.

RSC Advances ◽  
2016 ◽  
Vol 6 (84) ◽  
pp. 81426-81435 ◽  
Author(s):  
Ermias Libnedengel Tsege ◽  
Gyu Han Kim ◽  
Venkateswarlu Annapureddy ◽  
Beomkeun Kim ◽  
Hyung-Kook Kim ◽  
...  

A novel, flexible lead-free piezoelectric nanogenerator was developed using a uniform BaTiO3 film; synthesized by in situ conversion of titanium oxide nanotubes in a low temperature hydrothermal process.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sk. Safdar Hossain ◽  
Sleem ur Rahman ◽  
Shakeel Ahmed

This paper presents the experimental investigation of copper loaded carbon nanotubes (CNTs) electrocatalysts for the electrochemical reduction of carbon dioxide. The electrocatalysts were synthesized by homogeneous deposition precipitation method (HDP) using urea as precipitating agent. The prepared catalysts were characterized by TEM, SEM, XRD, XPS, BET, and FTIR for their morphology and structure. Characterization results confirm the deposition of Cu nanoparticles (3–60 nm) on CNTs. Linear sweep voltammetry (LSV) and chronoamperometry (CA) were used to investigate the activity of the as-prepared catalysts for the electrochemical reduction of carbon dioxide. The electrocatalysts reduced CO2with high current density in the potential range 0~−3 V versus SCE (standard calomel electrode). Among all catalysts tested, 20 wt. % copper loaded CNTs showed maximum activity. Gas chromatograph with TCD was used to analyze liquid phase composition. The faradaic efficiency for methanol formation was estimated to be 38.5%.


2021 ◽  
Vol 41 (3) ◽  
pp. 211-217
Author(s):  
Abhishek Kumar ◽  
Leela Manohar Aeshala

Abstract Imidazolium functionalized polymer electrolytes for the electrochemical reduction of gaseous CO2 (ERGC) were studied for the first time in a developed reactor at room temperature and atmospheric pressure. It was found that reaction environment favors the CO2 reduction reaction by overcoming the mass transfer of CO2 with the use of imidazolium fixed functional groups. The selectivity and Faradaic efficiency of products formed during ERGC is enhanced due to the modified functional groups in the solid polymer matrix. This work may open up new research opportunities for the conversion of gaseous CO2 to green fuels.


Author(s):  
Yucheng Wang ◽  
Hanhui Lei ◽  
Hang Xiang ◽  
Yongqing Fu ◽  
Chenxi Xu ◽  
...  

2001 ◽  
Vol 79 (22) ◽  
pp. 3702-3704 ◽  
Author(s):  
G. H. Du ◽  
Q. Chen ◽  
R. C. Che ◽  
Z. Y. Yuan ◽  
L.-M. Peng

2007 ◽  
Vol 124-126 ◽  
pp. 1165-1168 ◽  
Author(s):  
M. Qamar ◽  
Cho Rong Yoon ◽  
Hyo Jin Oh ◽  
Anna Czoska ◽  
K. Park ◽  
...  

The TiO2 sol was prepared hydrothermally in an autoclave from aqueous TiOCl2 solutions as starting precursor. Hollow fibers were obtained when sol-gel derived TiO2 sol was treated chemically with NaOH solution and subsequently heated in autoclave under various conditions. A systematic analysis of the influence of different NaOH concentrations on the formation of nanotubes has been carried out using XRD and SEM. The phase structure of the synthesized material was determined by transmission electron microscopy and found that these materials are, infact, hollow fibers widely known as nanotubes. From the TEM images, the outer and inner diameters of the tubes were measured ca. 8 and about 4 nm, respectively, with several hundred nanometers in length.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1319 ◽  
Author(s):  
Stefano Trocino ◽  
Carmelo Lo Vecchio ◽  
Sabrina Campagna Zignani ◽  
Alessandra Carbone ◽  
Ada Saccà ◽  
...  

A photoelectrochemical tandem cell (PEC) based on a cathodic hydrophobic gas-diffusion backing layer was developed to produce dry hydrogen from solar driven water splitting. The cell consisted of low cost and non-critical raw materials (CRMs). A relatively high-energy gap (2.1 eV) hematite-based photoanode and a low energy gap (1.2 eV) cupric oxide photocathode were deposited on a fluorine-doped tin oxide glass (FTO) and a hydrophobic carbonaceous substrate, respectively. The cell was illuminated from the anode. The electrolyte separator consisted of a transparent hydrophilic anionic solid polymer membrane allowing higher wavelengths not absorbed by the photoanode to be transmitted to the photocathode. To enhance the oxygen evolution rate, a NiFeOX surface promoter was deposited on the anodic semiconductor surface. To investigate the role of the cathodic backing layer, waterproofing and electrical conductivity properties were studied. Two different porous carbonaceous gas diffusion layers were tested (Spectracarb® and Sigracet®). These were also subjected to additional hydrophobisation procedures. The Sigracet 35BC® showed appropriate ex-situ properties for various wettability grades and it was selected as a cathodic substrate for the PEC. The enthalpic and throughput efficiency characteristics were determined, and the results compared to a conventional FTO glass-based cathode substrate. A throughput efficiency of 2% was achieved for the cell based on the hydrophobic backing layer, under a voltage bias of about 0.6 V, compared to 1% for the conventional cell. For the best configuration, an endurance test was carried out under operative conditions. The cells were electrochemically characterised by linear polarisation tests and impedance spectroscopy measurements. X-Ray Diffraction (XRD) patterns and Scanning Electron Microscopy (SEM) micrographs were analysed to assess the structure and morphology of the investigated materials.


Sign in / Sign up

Export Citation Format

Share Document