scholarly journals Functional Expression of Choline Transporters in Human Neural Stem Cells and Its Link to Cell Proliferation, Cell Viability, and Neurite Outgrowth

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 453
Author(s):  
Yosuke Fujita ◽  
Tomoki Nagakura ◽  
Hiroyuki Uchino ◽  
Masato Inazu ◽  
Tsuyoshi Yamanaka

Choline and choline metabolites are essential for all cellular functions. They have also been reported to be crucial for neural development. In this work, we studied the functional characteristics of the choline uptake system in human neural stem cells (hNSCs). Additionally, we investigated the effect of extracellular choline uptake inhibition on the cellular activities in hNSCs. We found that the mRNAs and proteins of choline transporter-like protein 1 (CTL1) and CTL2 were expressed at high levels. Immunostaining showed that CTL1 and CTL2 were localized in the cell membrane and partly in the mitochondria, respectively. The uptake of extracellular choline was saturable and performed by a single uptake mechanism, which was Na+-independent and pH-dependent. We conclude that CTL1 is responsible for extracellular choline uptake, and CTL2 may uptake choline in the mitochondria and be involved in DNA methylation via choline oxidation. Extracellular choline uptake inhibition caused intracellular choline deficiency in hNSCs, which suppressed cell proliferation, cell viability, and neurite outgrowth. Our findings contribute to the understanding of the role of choline in neural development as well as the pathogenesis of various neurological diseases caused by choline deficiency or choline uptake impairment.

Author(s):  
Yosuke Fujita ◽  
Tomoki Nagakura ◽  
Hiroyuki Uchino ◽  
Masato Inazu ◽  
Tsuyoshi Yamanaka

Choline and choline metabolites are essential for all cellular functions. They have also been reported to be crucial for neural development. In this work, we studied the functional characteristics of the choline uptake system in human neural stem cells (hNSCs). Additionally, we investigated the effect of extracellular choline uptake inhibition on the cellular activities in hNSCs. We found that the mRNAs and proteins of choline transporter-like protein 1 (CTL1) and CTL2 were expressed at high levels. Immunostaining showed that CTL1 and CTL2 were localized in the cell membrane and partly in the mitochondria, respectively. The uptake of extracellular choline was saturable and performed by a single uptake mechanism, which was Na+-independent and pH-dependent. We conclude that CTL1 is responsible for extracellular choline uptake, and CTL2 may uptake choline in the mitochondria and be involved in DNA methylation via choline oxidation. Extracellular choline uptake inhibition caused intracellular choline deficiency in hNSCs, which suppressed cell proliferation, cell viability, and neurite outgrowth. Our findings contribute to the understanding of the role of choline in neural development as well as the pathogenesis of various neurological diseases caused by choline deficiency or choline uptake impairment.


2016 ◽  
Vol 14 (2) ◽  
pp. 1316-1322 ◽  
Author(s):  
Pan Yang ◽  
Yun-Qian Guan ◽  
Ya-Li Li ◽  
Li Zhang ◽  
Lan Zhang ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Phil Jun Kang ◽  
Daryeon Son ◽  
Tae Hee Ko ◽  
Wonjun Hong ◽  
Wonjin Yun ◽  
...  

Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.


2021 ◽  
Vol 22 (8) ◽  
pp. 3913
Author(s):  
Satoshi Nakata ◽  
Ming Yuan ◽  
Jeffrey A. Rubens ◽  
Ulf D. Kahlert ◽  
Jarek Maciaczyk ◽  
...  

Central nervous system tumor with BCL6-corepressor internal tandem duplication (CNS-BCOR ITD) is a malignant entity characterized by recurrent alterations in exon 15 encoding the essential binding domain for the polycomb repressive complex (PRC). In contrast to deletion or truncating mutations seen in other tumors, BCOR expression is upregulated in CNS-BCOR ITD, and a distinct oncogenic mechanism has been suggested. However, the effects of this change on the biology of neuroepithelial cells is poorly understood. In this study, we introduced either wildtype BCOR or BCOR-ITD into human and murine neural stem cells and analyzed them with quantitative RT-PCR and RNA-sequencing, as well as growth, clonogenicity, and invasion assays. In human cells, BCOR-ITD promoted derepression of PRC2-target genes compared to wildtype BCOR. A similar effect was found in clinical specimens from previous studies. However, no growth advantage was seen in the human neural stem cells expressing BCOR-ITD, and long-term models could not be established. In the murine cells, both wildtype BCOR and BCOR-ITD overexpression affected cellular differentiation and histone methylation, but only BCOR-ITD increased cellular growth, invasion, and migration. BCOR-ITD overexpression drives transcriptional changes, possibly due to altered PRC function, and contributes to the oncogenic transformation of neural precursors.


2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2012 ◽  
Vol 4 (155) ◽  
pp. 155ra136-155ra136 ◽  
Author(s):  
N. Uchida ◽  
K. Chen ◽  
M. Dohse ◽  
K. D. Hansen ◽  
J. Dean ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10145 ◽  
Author(s):  
Margherita Neri ◽  
Claudio Maderna ◽  
Daniela Ferrari ◽  
Chiara Cavazzin ◽  
Angelo L. Vescovi ◽  
...  

2016 ◽  
Vol 54 (8) ◽  
pp. 6213-6224 ◽  
Author(s):  
Nora Bengoa-Vergniory ◽  
Irantzu Gorroño-Etxebarria ◽  
Inmaculada López-Sánchez ◽  
Michele Marra ◽  
Pierluigi Di Chiaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document