scholarly journals The Role of RhoH in TCR Signalling and Its Involvement in Diseases

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 950
Author(s):  
Ana Masara Ahmad Mokhtar ◽  
Ilie Fadzilah Hashim ◽  
Muaz Mohd Zaini Makhtar ◽  
Nor Hawani Salikin ◽  
Syafinaz Amin-Nordin

As an atypical member of the Rho family small GTPases, RhoH shares less than 50% sequence similarity with other members, and its expression is commonly observed in the haematopoietic lineage. To date, RhoH function was observed in regulating T cell receptor signalling, and less is known in other haematopoietic cells. Its activation may not rely on the standard GDP/GTP cycling of small G proteins and is thought to be constitutively active because critical amino acids involved in GTP hydrolysis are absent. Alternatively, its activation can be regulated by other types of regulation, including lysosomal degradation, somatic mutation and transcriptional repressor, which also results in an altered protein expression. Aberrant protein expression of RhoH has been implicated not only in B cell malignancies but also in immune-related diseases, such as primary immunodeficiencies, systemic lupus erythematosus and psoriasis, wherein its involvement may provide the link between immune-related diseases and cancer. RhoH association with these diseases involves several other players, including its interacting partner, ZAP−70; activation regulators, Vav1 and RhoGDI and other small GTPases, such as RhoA, Rac1 and Cdc42. As such, RhoH and its associated proteins are potential attack points, especially in the treatment of cancer and immune-related diseases.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4130-4130
Author(s):  
Lindsay Smith ◽  
Elizabeth Hogg ◽  
Angus Haynes ◽  
Jonathan C Strefford ◽  
Francesco Forconi ◽  
...  

Abstract Chronic lymphocytic leukaemia (CLL) is characterised by an accumulation of B cells which is broadly split into two groups representing a progressive IGHV unmutated (U-CLL) and a more indolent IGHV mutated (M-CLL) disease. Activation of the B cell receptor (BCR) by antigen/autoantigen engagement is crucial for CLL cell survival, disease progression and resistance to therapy, however further research is required to better understand how BCR signalling impacts on CLL biology. Autophagy is known to play a role in tumorigenesis and resistance to therapy in solid tumors, however whether autophagy has a role in CLL biology and how it is regulated has not been fully investigated. Autophagy is important for normal B cell development and is known to be regulated by various drug treatments in vitro in CLL samples. A previous study showed that activation of the BCR on murine splenic B cells with soluble or bead immobilised (BI) anti-IgM induced autophagy and subsequent apoptosis, however, the role of BCR-induced autophagy has not been explored in B cell malignancies and particularly CLL. Firstly, we assessed basal protein expression of key autophagy markers LC3BII, and ATG3 in CLL samples and age-matched normal donor B cells (NDB). CLL cells expressed significantly more LC3BII (p=.014, n=57) and ATG3 (p=.04, n=58) compared with NDB (n=8), with a greater LC3BII protein expression in U-CLL compared to M-CLL (p=.039, n=57), indicating more autophagy occurs in U-CLL. Furthermore basal increases in autophagy markers GABARAPL2 (LC3B family member) (p=.0004, n=34) and ATG4A (p=.04, n=20) at the RNA level were significantly associated with the ability of CLL cells to flux calcium (>10%) in response to anti-IgM. This indicated a possible role of the BCR in the regulation of autophagy in CLL samples and a possible association with progressive disease. Activation of the CLL BCR with BI anti-IgM significantly induced expression of autophagy markers ATG3 (p=.002, n=22), LC3BII (p<.0001, n=23) and p62 (p=.0011, n=9) at the protein level and ATG3 (p=.04, n=8) and GABARAPL2 (p=.03, n=6) at the RNA level in a time dependent manner. Next, CLL samples were treated with BI anti-IgM in the presence or absence of the autophagy inhibitor hydroxychloroquine (HCQ) to confirm the increase in autophagic flux indicated at the RNA level. Addition of HCQ in combination with BI anti-IgM significantly increased accumulation of LC3BII protein expression compared with HCQ or anti-IgM alone (p=.01 and p=.02 respectively, n=5) indicating an increase in autophagic flux. Treatment with ibrutinib or R406 prevented BI anti-IgM dependent increases in LC3BII (p=.02 and p=.009 respectively, n=9) and p62 expression (p=.02 and p=.006 respectively, n=9). Confirming the role of the BCR in the regulation of autophagy in CLL samples and indicating that inhibition of autophagy may contribute to the clinical responses seen with these BCR kinase inhibitors. Finally we showed that BI anti-IgM increased CLL cell viability compared to BI isotype control (p=.002, n=7), whilst the addition of HCQ significantly reversed this effect (p=.001, n=7). More importantly treatment with BI anti-IgM protected CLL cells against fludarabine induced cell death (p=.0004, n=3) which again was reversed by the addition of HCQ (p=.05, n=3). These data emphasise the importance of BCR signalling in the regulation of autophagy and its impact on therapy resistance and suggest a possible role for autophagy inhibitors in the treatment of CLL. Disclosures Strefford: Roche: Research Funding. Steele:Portola Pharmaceuticals: Other: Travel bursary to ASH 2015; Janssen: Other: Travel bursary to EHA 2015.


2020 ◽  
Author(s):  
Cong Wang ◽  
Longfei Lu ◽  
Zitong Feng ◽  
Yongmeng Li ◽  
Ming Lu ◽  
...  

Abstract Background: Increasing studies have found the dysregulated FAM83A as a potential biomarker in various cancers. Its function in cancer cells is largely unknown, and especially their role in LUSC remains unclear. We detected the expression level and prognosis role of FAM83A in LUSC.Methods: The bioinformatics methods were performed initially to predict the expression level and prognostic value of FAM83A mRNA in LUSC. We used IHC to examine its protein expression level and identify its prognostic value using 132 pairs of tissues.Results: Results from TCGA and Oncomine databases revealed that FAM83A mRNA expression level was significantly higher in LUSC than that in normal lung tissue. TCGA and GEO databases revealed FAM83A mRNA overexpression was significantly associated with poorer OS of LUSC patients (all P<0.05). Furtherly, our IHC results revealed that FAM83A was overexpressed in 78 (59.1%) patients and 19(14.4%) pancancerous tissues (P<0.001). Kaplan-Meier analyses revealed that high FAM83A protein expression was significantly associated with decreased 5-years’ OS (P = 0.007) and PFS (P = 0.007). Via multivariate analysis, FAM83A expression level was independent prognostic factor for both OS (P = 0.006) and PFS (P = 0.002).Conclusion: FAM83A was overexpressed in LUSC and it could serve as a prognosis prediction biomarker for LUSC. FAM83A could act as one new potential therapeutic target for LUSC treatment.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


2020 ◽  
Vol 23 (13) ◽  
Author(s):  
Ikram khazal Qasim Al- hasso ◽  
Aida Rashid Al- Derzi ◽  
Ahmed Abdul-hassan Abbas ◽  
Faiq I. Gorial ◽  
Ahmed Sameer Alnuimi

2019 ◽  
Vol 14 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Cong Tang ◽  
Guodong Zhu

The nuclear factor kappa B (NF-κB) consists of a family of transcription factors involved in the regulation of a wide variety of biological responses. Growing evidence support that NF-κB plays a major role in oncogenesis as well as its well-known function in the regulation of immune responses and inflammation. Therefore, we made a review of the diverse molecular mechanisms by which the NF-κB pathway is constitutively activated in different types of human cancers and the potential role of various oncogenic genes regulated by this transcription factor in cancer development and progression. We also discussed various pharmacological approaches employed to target the deregulated NF-κB signaling pathway and their possible therapeutic potential in cancer therapy. Moreover, Syk (Spleen tyrosine kinase), non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immune-receptors like the B-cell receptor (BCR), which can also activate the inflammasome and NF-κB-mediated transcription of chemokines and cytokines in the presence of pathogens would be discussed as well. The highlight of this review article is to summarize the classic and novel signaling pathways involved in NF-κB and Syk signaling and then raise some possibilities for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document