resistance to therapy
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 70)

H-INDEX

30
(FIVE YEARS 4)

mBio ◽  
2022 ◽  
Author(s):  
Justin T. Landis ◽  
Ryan Tuck ◽  
Yue Pan ◽  
Carson N. Mosso ◽  
Anthony B. Eason ◽  
...  

Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ingmar Rieger ◽  
Vasileia Tsintari ◽  
Mathis Overkamp ◽  
Falko Fend ◽  
Charles D. Lopez ◽  
...  

Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3338-3338
Author(s):  
Priyanka Sharma ◽  
Sujan Piya ◽  
Huaxian Ma ◽  
Natalia Baran ◽  
Malgorzata Anna Zal ◽  
...  

Abstract Background: Presence at diagnosis or acquisition of activating RAS pathway mutations is a pervasive mechanism of resistance to therapy in AML. Efforts to directly target mutant RAS have been unsuccessful and the efficacy of BRAF and MEK inhibitors has been limited due to compensatory reactivation of MAPK signaling. ERK1/2 (ERK) is a key downstream component in the MAPK pathway and therefore represents an attractive target for inhibiting MAPK signaling. Compound 27 (1) is a dual-mechanism inhibitor of ERK that inhibits both the catalytic activity of ERK and its phosphorylation by MEK. It is a close analog of ASTX029, a dual-mechanism ERK inhibitor currently under clinical investigation in solid tumors (NCT03520075). Objectives: We analysed the preclinical activity of Compound 27 in AML, investigated its mechanism of action and ability to overcome resistance. Results: Using a panel of 9 AML cell lines, the IC50 value for single agent Compound 27 was in the low to intermediate nanomolar range (1.89-388 nM). Decreased ERK phosphorylation was confirmed by Western blot analysis. To better characterize the biological effects of Compound 27, we performed mass cytometry (CyTOF) analysis of NRAS-mutated OCI-AML3 cells. This experiment showed approximately 75% downregulation of CyclinB1 and cMyc in 250 nM drug-treated cells versus untreated cells (Figure 1a). The expression of anti-apoptotic proteins, including MCL1, BclXL and Bcl2, were also decreased. Western blot analysis confirmed increased cleaved PARP, and reduced cMyc and cell cycle-related proteins CyclinB1, CyclinD1 and CDK4 with Compound 27 treatment. In isogenic cells, p53 knock-down had no effect on the efficacy of Compound 27. We next investigated the efficacy of simultaneous inhibition of ERK and Bcl-2 in AML cells. Compound 27 sensitized OCI-AML3 cells, which are intrinsically resistant to ABT-199 (a Bcl-2 inhibitor), to treatment with ABT-199 and shifted the cytostatic effect of the single agents to a cytotoxic effect with a combination index (CI) of 0.008 (cell death 91% for combination versus 20% with ABT-199 alone). This suggests strong synergistic effects of combination treatment (Figure 1b). In OCI-AML2 cells with acquired resistance to ABT-199, the combination increased apoptosis to 80% as compared to 20% with ABT-199 alone. Compound 27 sensitized bulk CD45+ as well as CD34+CD38-leukemia progenitor cells to ABT-199. Compound 27 also sensitized FLT3-ITD mutant human AML cell lines MOLM13, MOLM14, MV-4-11 and murine Ba/F3-ITD cells to the FLT3 inhibitor AC220 (CI in MOLM13=0.3). Synergy of Compound 27 and 5-azacitidine was also observed (p=0.009). Leukemia microenvironment-mediated resistance to therapy is partly mediated by MAPK activation. We co-cultured OCI-AML3 and MOLM13 cells with normal bone marrow-derived mesenchymal stromal cells (NMSCs) to mimic the bone marrow microenvironment and analysed the effect of Compound 27 in combination with either ABT-199 or AC220. Combination drug treatment were more effective in terms of cytoreduction and apoptosis induction in coculture. However, neither combination was able to completely overcome stroma-mediated resistance (Figure 1b). Analysis of other stroma-relevant molecules in coculture showed that CXCR4 was increased while CD44 was decreased in response to ERK inhibition. Effective reactive oxygen species (ROS) mitigation and hyper-active mitochondrial fission is important for maintaining "stemness" of AML cells (2). ERK phosphorylates DRP1, which is necessary for mitochondrial fission. Treatment of OCI-AML3 cells with Compound 27 led to increased mitochondrial ROS, decreased levels of pDRP1(Ser616) and increased mitochondrial length, suggesting impaired fission and reduced "stemness" of AML cells (Figure 1c). Conclusion: ERK inhibition by Compound 27 synergizes with 5-azacitidine, ABT-199 and AC220 and can overcome primary or acquired resistance. The impact on mitochondrial dynamics suggests a potential impact on leukemia stem cells. Additional mechanistic confirmatory work is in progress. References: 1. Heightman TD, Berdini V, Braithwaite H, et al. Fragment-based discovery of a potent, orally bioavailable inhibitor that modulates the phosphorylation and catalytic activity of ERK1/2. J Med Chem. 2018;61(11):4978-4992. 2. Schimmer AD. Mitochondrial Shapeshifting Impacts AML Stemness and Differentiation. Cell Stem Cell. 2018;23(1):3-4. Figure 1 Figure 1. Disclosures Hindley: Astex Pharmaceuticals: Current Employment. Dao: Astex Pharmaceuticals, Inc.: Current Employment. Sims: Astex Pharmaceuticals: Current Employment. Andreeff: Medicxi: Consultancy; Syndax: Consultancy; Aptose: Consultancy; ONO Pharmaceuticals: Research Funding; AstraZeneca: Research Funding; Amgen: Research Funding; Reata, Aptose, Eutropics, SentiBio; Chimerix, Oncolyze: Current holder of individual stocks in a privately-held company; Breast Cancer Research Foundation: Research Funding; Karyopharm: Research Funding; Glycomimetics: Consultancy; Senti-Bio: Consultancy; Oxford Biomedica UK: Research Funding; Daiichi-Sankyo: Consultancy, Research Funding; Novartis, Cancer UK; Leukemia & Lymphoma Society (LLS), German Research Council; NCI-RDCRN (Rare Disease Clin Network), CLL Foundation; Novartis: Membership on an entity's Board of Directors or advisory committees. Borthakur: University of Texas MD Anderson Cancer Center: Current Employment; Takeda: Membership on an entity's Board of Directors or advisory committees; Astex: Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Ryvu: Research Funding; ArgenX: Membership on an entity's Board of Directors or advisory committees; Protagonist: Consultancy; GSK: Consultancy.


2021 ◽  
Author(s):  
Peyton J Tebon ◽  
Bowen Wang ◽  
Alexander L Markowitz ◽  
Graeme Murray ◽  
Huyen Thi Lam Nguyen ◽  
...  

There is increasing interest in leveraging tumor organoids for high-throughput drug screenings to investigate tumor biology and identify therapeutic leads. However, functional precision medicine platforms are limited by the difficulties of creating, scaling, and analyzing physiological disease models. Most systems use manually seeded organoids and take advantage of destructive endpoint assays to rapidly characterize response to treatment. These approaches fail to capture transitory changes and intra-sample heterogeneity that underlies much of the clinically observed resistance to therapy. We therefore developed bioprinted tumor organoids linked to real-time growth pattern quantitation via high-speed live cell interferometry (HSLCI). We demonstrate that bioprinting gives rise to 3D organoid structures that preserve histology and gene expression. These are suitable for imaging with HSLCI, enabling accurate parallel mass measurements for thousands of bioprinted organoids. In drug screening experiments, HSLCI rapidly identifies organoids transiently or persistently sensitive or resistant to specific therapies. We show that our approach can provide detailed, actionable information to guide rapid therapy selection.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guohao Wang ◽  
Lisi Xie ◽  
Bei Li ◽  
Wei Sang ◽  
Jie Yan ◽  
...  

AbstractIn addition to increasing the expression of programmed death-ligand 1 (PD-L1), tumor cells can also secrete exosomal PD-L1 to suppress T cell activity. Emerging evidence has revealed that exosomal PD-L1 resists immune checkpoint blockade, and may contribute to resistance to therapy. In this scenario, suppressing the secretion of tumor-derived exosomes may aid therapy. Here, we develop an assembly of exosome inhibitor (GW4869) and ferroptosis inducer (Fe3+) via amphiphilic hyaluronic acid. Cooperation between the two active components in the constructed nanounit induces an anti-tumor immunoresponse to B16F10 melanoma cells and stimulates cytotoxic T lymphocytes and immunological memory. The nanounit enhances the response to PD-L1 checkpoint blockade and may represent a therapeutic strategy for enhancing the response to this therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fan Huang ◽  
François Santinon ◽  
Raúl Ernesto Flores González ◽  
Sonia V. del Rincón

Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.


Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Angeliki Ditsiou ◽  
Teresa Gagliano ◽  
Mark Samuels ◽  
Viviana Vella ◽  
Christos Tolias ◽  
...  

In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.


2021 ◽  
pp. 138-146
Author(s):  
A. I. Stukan ◽  
A. Y. Goryainova ◽  
S. V. Sharov ◽  
D. V. Andreev ◽  
E. V. Lymar

Metastatic breast cancer occupies a leading position in the structure of mortality among women with oncological diseases worldwide. At the same time, the control of metastatic disease remains a significant problem for clinical oncology despite the improvement of early screening indicators, as well as the introduction of targeted therapy in clinical practice. An increase in the tumor stemness and the epithelial-mesenchymal transition in the primary tumor leads to the plasticity of the tumor cell. This is realized in the progression of the disease, resistance to the therapy and the appearance of distant metastases. Numerous signaling pathways, including PI3K/APK, STAT3, Wnt, Hedgehog, and Notch, play a key role in maintaining cellular plasticity in breast cancer. Understanding the cellular mechanisms of breast cancer cell plasticity with the development of multidrug resistance is a prerequisite for the development of effective therapeutic strategies against metastatic breast cancer in late-line therapy. The article presents an overview of the current understanding of the biological mechanism of the metastatic cascade and resistance to therapy. It is from the point of view of the plasticity of the tumor cell and the increase in the stemness of the tumor that the resistance to treatment is considered. The effectiveness of the representative of Ixabepilone was analyzed in the case of its use in the late-line therapy of hormone-receptor-positive breast cancer with multidrug resistance.


Sign in / Sign up

Export Citation Format

Share Document