scholarly journals The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2160
Author(s):  
Guoxun Chen

The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA’s physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA signaling systems; the effects of VA status and activation of RARs and RXRs on metabolism and RAR and RXR phosphorylation; and possible interactions of insulin and RA in the regulation of hepatic genes for glucose and lipid metabolism. In addition, some future research perspectives for understanding of nutrient and hormone interactions are provided.

2012 ◽  
Vol 90 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Shi Zhao ◽  
Rui Li ◽  
Yang Li ◽  
Wei Chen ◽  
Yan Zhang ◽  
...  

The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscle. It proposes a mechanism by which the dietary and hormonal signals converge on the promoter of sterol regulatory element-binding protein 1c gene to induce its expression, and in turn, the expression of lipogenic genes in hepatocytes. Future research projects relevant to the VA’s roles in metabolic diseases are also discussed.


2018 ◽  
Vol 164 (1) ◽  
pp. 240-249 ◽  
Author(s):  
Qing Sun ◽  
Guoqing Zhang ◽  
Rucheng Chen ◽  
Ran Li ◽  
Huanhuan Wang ◽  
...  

2019 ◽  
Vol 10 (9) ◽  
pp. 5804-5815 ◽  
Author(s):  
Fenfen Yan ◽  
Na Li ◽  
Jialu Shi ◽  
Huizhen Li ◽  
Yingxue Yue ◽  
...  

Lactobacillus acidophilus alleviates type 2 diabetes induced by a high fat diet and streptozotocin (STZ) injection by regulating gut microbiota, hepatic glucose and lipid metabolism in mice.


2000 ◽  
Vol 59 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Malcolm Maden

Retinoic acid (RA) is the bioactive metabolite of vitamin A (retinol) which acts on cells to establish or change the pattern of gene activity. Retinol is converted to RA by the action of two types of enzyme, retinol dehydrogenases and retinal dehydrogenases. In the nucleus RA acts as a ligand to activate two families of transcription factors, the RA receptors (RAR) and the retinoid X receptors (RXR) which heterodimerize and bind to the upstream sequences of RA-responsive genes. Thus, in addition to the well-established experimental paradigm of depriving animals of vitamin A to determine the role of RA in embryonic and post-embryonic development, molecular biology has provided us with two additional methodologies: knockout the enzymes or the RAR and RXR in the mouse embryo. The distribution of the enzymes and receptors, and recent experiments to determine the endogenous distribution of RA in the embryo are described here, as well as the effects on the embryo of knocking out the enzymes and receptors. In addition, recent studies using the classical vitamin A-deprivation technique are described, as they have provided novel insights into the regions of the embryo which crucially require RA, and the gene pathways involved in their development. Finally, the post-embryonic or regenerating systems in which RA plays a part are described, i.e. the regenerating limb, lung regeneration, hair cell regeneration in the ear and spinal cord regeneration in the adult.


Sign in / Sign up

Export Citation Format

Share Document