scholarly journals The Endothelin Receptor Antagonist Macitentan Inhibits Human Cytomegalovirus Infection

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3072
Author(s):  
Natalia Landázuri ◽  
Jennifer Gorwood ◽  
Ylva Terelius ◽  
Fredrik Öberg ◽  
Koon Chu Yaiw ◽  
...  

Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality in immunocompromised patients and a major etiological factor for congenital birth defects in newborns. Ganciclovir and its pro-drug valganciclovir are the preferred drugs in use today for prophylaxis and treatment of viremic patients. Due to long treatment times, patients are at risk for developing viral resistance to ganciclovir and to other drugs with a similar mechanism of action. We earlier found that the endothelin receptor B (ETBR) is upregulated during HCMV infection and that it plays an important role in the life cycle of this virus. Here, we tested the hypothesis that ETBR blockade could be used in the treatment of HCMV infection. As HCMV infection is specific to humans, we tested our hypothesis in human cell types that are relevant for HCMV pathogenesis; i.e., endothelial cells, epithelial cells and fibroblasts. We infected these cells with HCMV and treated them with the ETBR specific antagonist BQ788 or ETR antagonists that are approved by the FDA for treatment of pulmonary hypertension; macitentan, its metabolite ACT-132577, bosentan and ambrisentan, and as an anti-viral control, we used ganciclovir or letermovir. At concentrations expected to be relevant in vivo, macitentan, ACT-132577 and BQ788 effectively inhibited productive infection of HCMV. Of importance, macitentan also inhibited productive infection of a ganciclovir-resistant HCMV isolate. Our results suggest that binding or signaling through ETBR is crucial for viral replication, and that selected ETBR blockers inhibit HCMV infection.

1998 ◽  
Vol 275 (2) ◽  
pp. C515-C526 ◽  
Author(s):  
Lilia M. Maglova ◽  
William E. Crowe ◽  
Aníbal A. Altamirano ◽  
John M. Russell

The effects of human cytomegalovirus (HCMV) infection on Cl−/[Formula: see text]exchanger activity in human lung fibroblasts (MRC-5 cells) were studied using fluorescent, ion-sensitive dyes. The intracellular pH (pHi) of mock- and HCMV-infected cells bathed in a solution containing 5% CO2-25 mM[Formula: see text] were nearly the same. However, replacement of external Cl−with gluconate caused an H2DIDS-inhibitable (100 μM) increase in the pHi of HCMV-infected cells but not in mock-infected cells. Continuous exposure to hyperosmotic external media containing CO2/[Formula: see text]caused the pHi of both cell types to increase. The pHi remained elevated in mock-infected cells. However, in HCMV-infected cells, the pHi peaked and then recovered toward control values. This pHirecovery phase was completely blocked by 100 μM H2DIDS. In the presence of CO2/[Formula: see text], there was an H2DIDS-sensitive component of net Cl− efflux (external Cl− was substituted with gluconate) that was less in mock- than in HCMV-infected cells. When nitrate was substituted for external Cl− (in the nominal absence of CO2/[Formula: see text]), the H2DIDS-sensitive net Cl− efflux was much greater from HCMV- than from mock-infected cells. In mock-infected cells, H2DIDS-sensitive, net Cl− efflux decreased as pHi increased, whereas for HCMV-infected cells, efflux increased as pHi increased. All these results are consistent with an HCMV-induced enhancement of Cl−/[Formula: see text]exchanger activity.


Author(s):  
Olha Puhach ◽  
Eleonore Ostermann ◽  
Christoph Krisp ◽  
Giada Frascaroli ◽  
Hartmut Schlüter ◽  
...  

AbstractCytomegaloviruses (CMV) infect many different cell types and tissues in their respective hosts. Monocytes and macrophages play an important role in CMV dissemination from the site of infection to target organs. Moreover, macrophages are specialized in pathogen sensing and respond to infection by secreting cytokines and interferons. In murine cytomegalovirus (MCMV), a model for human cytomegalovirus, several genes required for efficient replication in macrophages have been identified, but their specific functions remain poorly understood. Here we show that MCMV m139, a gene of the conserved US22 gene family, encodes a protein that interacts with the DEAD box helicase DDX3, a protein involved in pathogen sensing and interferon (IFN) induction, and the E3 ubiquitin ligase UBR5. DDX3 and UBR5 also participate in the transcription, processing, and translation of a subset of cellular mRNAs. We show that m139 inhibits DDX3-mediated IFN-β induction and is necessary for efficient viral replication in bone-marrow derived macrophages. In vivo, m139 is crucial for viral dissemination to local lymph nodes and to the salivary glands. An m139-deficient MCMV also replicated to lower titers in SVEC4-10 endothelial cells. This replication defect was not accompanied by increased IFN-β transcription, but was rescued by knockout of either DDX3 or UBR5. Moreover, m139 co-localized with DDX3 and UBR5 in viral replication compartments in the cell nucleus. These results suggest that m139 inhibits DDX3-mediated IFN-β production in macrophages and antagonizes DDX3 and UBR5-dependent functions related to RNA metabolism in endothelial cells.Author SummaryHuman cytomegalovirus is an opportunistic pathogen that causes severe infections in immunocompromised individuals. The virus infects certain types, such as macrophages and endothelial cells, to ensure its dissemination within the body. Little is known about the viral factors that promote a productive infection of these cell types. The identification of critical viral factors and the molecular pathways they target can lead to the development of novel antiviral treatment strategies. Using the mouse cytomegalovirus as a model, we studied the viral m139 gene, which is important for virus replication in macrophages and endothelial cells and for dissemination in the mouse. This gene encodes a protein that interacts with the host proteins DDX3 and UBR5. Both proteins are involved in gene expression, and the RNA helicase DDX3 also participates in mounting an innate antiviral response. By interacting with DDX3 and UBR5, m139 ensures efficient viral replication in endothelial cells. Importantly, we identify m139 as a new viral DDX3 inhibitor, which curtails the production of interferon in macrophages.


2021 ◽  
Vol 22 (16) ◽  
pp. 8728
Author(s):  
Evi B. Struble ◽  
Haruhiko Murata ◽  
Takashi Komatsu ◽  
Dorothy Scott

Human Cytomegalovirus (HCMV) infection is widespread and can result in severe sequelae in susceptible populations. Primary HCMV infection of naïve individuals results in life-long latency characterized by frequent and sporadic reactivations. HCMV infection elicits a robust antibody response, including neutralizing antibodies that can block the infection of susceptible cells in vitro and in vivo. Thus, antibody products and vaccines hold great promise for the prevention and treatment of HCMV, but to date, most attempts to demonstrate their safety and efficacy in clinical trials have been unsuccessful. In this review we summarize publicly available data on these products and highlight new developments and approaches that could assist in successful translation of HCMV immunotherapies.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 487-493 ◽  
Author(s):  
Kirsten Crapnell ◽  
Esmail D. Zanjani ◽  
Aniruddho Chaudhuri ◽  
Joao L. Ascensao ◽  
Stephen St. Jeor ◽  
...  

Apart from congenital human cytomegalovirus (HCMV) infection, manifest HCMV disease occurs primarily in immunocompromised patients. In allogeneic bone marrow transplantation, HCMV is frequently associated with graft failure and cytopenias involving all hematopoietic lineages, but thrombocytopenia is the most commonly reported hematologic complication. The authors hypothesized that megakaryocytes (MK) may be a specific target for HCMV. Although the susceptibility of immature hematopoietic progenitors cells to HCMV has been established, a productive viral life cycle has only been linked to myelomonocytic maturation. The authors investigated whether HCMV can also infect MK and impair their function. They demonstrated that HCMV did not affect the thrombopoietin (TPO)-driven proliferation of CD34+ cells until MK maturation occurred. MK challenged with HCMV showed a 50% more rapid loss of viability than mock-infected cells. MK and their early precursors were clearly shown to be susceptible to HCMV in vitro, as evidenced by the presence of HCMV in magnetic column-purified CD42+ MK and 2-color fluorescent staining with antibodies directed against CD42a and HCMV pp65 antigen. These findings were confirmed by the infection of MK with a laboratory strain of HCMV containing the β-galactosidase (β-gal) gene. Using chromogenic β-gal substrates, HCMV was detected during MK differentiation of infected CD34+ cells and after infection of fully differentiated MK. Production of infectious virus was observed in cultures infected MK, suggesting that HCMV can complete its life cycle. These results demonstrate that MK are susceptible to HCMV infection and that direct infection of these cells in vivo may contribute to the thrombocytopenia observed in patients infected with HCMV.


2002 ◽  
Vol 76 (15) ◽  
pp. 7705-7712 ◽  
Author(s):  
Alexander M. Ishov ◽  
Olga V. Vladimirova ◽  
Gerd G. Maul

ABSTRACT Human cytomegalovirus (HCMV) starts immediate-early transcription at nuclear domains 10 (ND10), forming a highly dynamic immediate transcript environment at this nuclear site. The reason for this spatial correlation remains enigmatic, and the mechanism for induction of transcription at ND10 is unknown. We investigated whether tegument-based transactivators are involved in the specific intranuclear location of HCMV. Here, we demonstrate that the HCMV transactivator tegument protein pp71 accumulates at ND10 before the production of immediate-early proteins. Intracellular trafficking of pp71 is facilitated through binding to a coiled-coil region of Daxx. The C-terminal domain of Daxx then interacts with SUMO-modified PML, resulting in the deposition of pp71 at ND10. In Daxx-deficient cells, pp71 does not accumulate at ND10, proving in vivo the necessity of Daxx for pp71 deposition. Also, HCMV forms immediate transcript environments at sites other than ND10 in Daxx-deficient cells, and so does the HCMV pp71 knockout mutant UL82−/− in normal cells. This result strongly suggests that pp71 and Daxx are essential for HCMV transcription at ND10. Lack of Daxx had the effect of reducing the infection rate. We conclude that the tegument transactivator pp71 facilitates viral genome deposition and transcription at ND10, possibly priming HCMV for more efficient productive infection.


2006 ◽  
Vol 87 (8) ◽  
pp. 2171-2180 ◽  
Author(s):  
Christine A. King ◽  
Joan Baillie ◽  
John H. Sinclair

For some time there has been evidence suggesting an interaction between human cytomegalovirus (HCMV) and Human immunodeficiency virus (HIV) in the pathogenesis of AIDS. Here, the interaction of HCMV and HIV-1 was examined in monocyte/macrophage cells, two cell types known to be targets for both viruses in vivo. Infection experiments demonstrated that prior infection with HCMV impeded subsequent superinfection with HIV-1. In contrast, uninfected bystander cells within the population were still permissive for HIV-1 infection and were also found to express increased levels of Gag after HIV-1 superinfection. Analysis of CCR5, a co-receptor for HIV-1, on HCMV-infected and bystander cells showed a substantial loss of surface CCR5 expression on infected cells due to HCMV-induced reduction of total cellular CCR5. In contrast, uninfected bystander cells displayed increased surface CCR5 expression. Furthermore, the data suggested that soluble factor(s) secreted from HCMV-infected cells were responsible for the observed upregulation of CCR5 on uninfected bystander cells. Taken together, these results suggest that, whilst HCMV-infected monocytes/macrophages are refractory to infection with HIV-1, HCMV-uninfected bystander cells within a population are more susceptible to HIV-1 infection. On this basis, HCMV infection may contribute to the pathogenesis of HIV-1.


2018 ◽  
Author(s):  
Cody S. Nelson ◽  
Diana Vera Cruz ◽  
Melody Su ◽  
Guanhua Xie ◽  
Nathan Vandergrift ◽  
...  

AbstractHuman cytomegalovirus (HCMV) is the most common congenital infection worldwide, and a frequent cause of hearing loss or debilitating neurologic disease in newborn infants. Thus, a vaccine to prevent HCMV-associated congenital disease is a public health priority. One potential strategy is vaccination of women of child-bearing age to prevent maternal HCMV acquisition during pregnancy. The glycoprotein B (gB) + MF59 adjuvant subunit vaccine is the most efficacious tested clinically to date, demonstrating approximately 50% protection against HCMV infection of seronegative women in multiple phase 2 trials. Yet, the impact of gB/MF59-elicited immune responses on the population of viruses acquired by trial participants has not been assessed. In this analysis, we employed quantitative PCR as well as multiple sequencing methodologies to interrogate the magnitude and genetic composition of HCMV populations infecting gB/MF59 vaccinees and placebo recipients. We identified several differences between the viral dynamics of acutely-infected vaccinees and placebo recipients. First, there was reduced magnitude viral shedding in the saliva of gB vaccinees. Additionally, employing a panel of tests for genetic compartmentalization, we noted tissue-specific gB haplotypes in the majority of vaccinees though only in a single placebo recipient. Finally, we observed reduced acquisition of genetically-related gB1, gB2, and gB4 genotype “supergroup” HCMV variants among vaccine recipients, suggesting that the gB1 genotype vaccine construct may have elicited partial protection against HCMV viruses with antigenically-similar gB sequences. These findings indicate that gB immunization may have had a measurable impact on viral intrahost population dynamics and support future analysis of a larger cohort.Author SummaryThough not a household name like Zika virus, human cytomegalovirus (HCMV) causes permanent neurologic disability in one newborn child every hour in the United States - more than Down syndrome, fetal alcohol syndrome, and neural tube defects combined. There are currently no established effective preventative measures to inhibit congenital HCMV transmission following acute or chronic HCMV infection of a pregnant mother. However, the glycoprotein B (gB) vaccine is the most effective HCMV vaccine tried clinically to date. Here, we utilized high-throughput, next-generation sequencing of viral DNA isolated from patients enrolled in a gB vaccine trial, and identified several impacts that this vaccine had on the size, distribution, and composition of thein vivoviral population. These results have increased our understanding of why the gB/MF59 vaccine was partially efficacious and will inform future rational design of a vaccine to prevent congenital HCMV.


2021 ◽  
Author(s):  
Wen-Jun Wang ◽  
Miao Feng ◽  
Feng He ◽  
Juan Song ◽  
Qin-Qin Song ◽  
...  

Abstract Background To establish a method for detecting HCMV viral load to guide clinical treatment by chip digital PCR (cdPCR). Methods 5.67×106TCID50/ml of HCMV AD169 was serially diluted to evaluate sensitive of cdPCR, HSV-1, HSV-2, VZV, EBV, HHV-6 and HHV-7 were used to evaluate the specificity of HCMV cdPCR. HCMV infection were analyzed in 110 children leukemia whole blood by RT-qPCR and cdPCR. Results The sensitive of HCMV cdPCR was up to 71 ± 32 copies/ml, which is higher than that of RT-qPCR. HCMV cdPCR did not cross react with other herpesviruses. The cdPCR effectively detected 7 HCMV positive samples, making the laboratory diagnosis rate of HCMV increased by 6.36% (7/110) for children leukemia patients. And the prevalence of HCMV infection increased from 28.18–34.54% in 110 children leukemia patients by cdPCR. Conclusion cdPCR is more sensitive to detect viral load than RT-qPCR. The cdPCR may be used to evaluate relationship between viral load and progression of HCMV infection in patients.


mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Katie Caviness ◽  
Farah Bughio ◽  
Lindsey B. Crawford ◽  
Daniel N. Streblow ◽  
Jay A. Nelson ◽  
...  

ABSTRACTHuman cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. TheUL136gene is carried within a genetic locus important to HCMV latency termed theUL133/8locus, which also carriesUL133,UL135, andUL138. Previously, we demonstrated thatUL136is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that theUL136isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work,UL136has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34+hematopoietic progenitor cell (HPC) model of latency, and in anin vivoNOD-scidIL2Rγcnullhumanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34+HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDaUL136isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of theUL133/8locus in HCMV infection.IMPORTANCEThe persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by theUL136gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay betweenUL136protein isoforms and defineUL136as an important regulator of HCMV persistence.


2004 ◽  
Vol 78 (17) ◽  
pp. 9474-9486 ◽  
Author(s):  
Refael Itah ◽  
Jacov Tal ◽  
Claytus Davis

ABSTRACT Productive infection by the murine autonomous parvovirus minute virus of mice (MVM) depends on a dividing cell population and its differentiation state. We have extended the in vivo analysis of the MVM host cell type range into the developing embryo by in utero inoculation followed by further gestation. The fibrotropic p strain (MVMp) and the lymphotropic i strain (MVMi) did not productively infect the early mouse embryo but were able to infect overlapping sets of cell types in the mid- or late-gestation embryo. Both MVMp and MVMi infected developing bone primordia, notochord, central nervous system, and dorsal root ganglia. MVMp exhibited extensive infection in fibroblasts, in the epithelia of lung and developing nose, and, to a lesser extent, in the gut. MVMi also infected endothelium. The data indicated that the host ranges of the two MVM strains consist of overlapping sets of cell types that are broader than previously known from neonate and in vitro infection experiments. The correlation between MVM host cell types and the cell types that activate the transgenic P4 promoter is consistent with the hypothesis that activation of the incoming viral P4 promoter by the host cell is one of the host range determinants of MVM.


Sign in / Sign up

Export Citation Format

Share Document