scholarly journals Single-Cell Transcriptomics Reveals the Expression of Aging- and Senescence-Associated Genes in Distinct Cancer Cell Populations

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3126
Author(s):  
Dominik Saul ◽  
Robyn Laura Kosinsky

The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.

Author(s):  
Irzam Sarfraz ◽  
Muhammad Asif ◽  
Joshua D Campbell

Abstract Motivation R Experiment objects such as the SummarizedExperiment or SingleCellExperiment are data containers for storing one or more matrix-like assays along with associated row and column data. These objects have been used to facilitate the storage and analysis of high-throughput genomic data generated from technologies such as single-cell RNA sequencing. One common computational task in many genomics analysis workflows is to perform subsetting of the data matrix before applying down-stream analytical methods. For example, one may need to subset the columns of the assay matrix to exclude poor-quality samples or subset the rows of the matrix to select the most variable features. Traditionally, a second object is created that contains the desired subset of assay from the original object. However, this approach is inefficient as it requires the creation of an additional object containing a copy of the original assay and leads to challenges with data provenance. Results To overcome these challenges, we developed an R package called ExperimentSubset, which is a data container that implements classes for efficient storage and streamlined retrieval of assays that have been subsetted by rows and/or columns. These classes are able to inherently provide data provenance by maintaining the relationship between the subsetted and parent assays. We demonstrate the utility of this package on a single-cell RNA-seq dataset by storing and retrieving subsets at different stages of the analysis while maintaining a lower memory footprint. Overall, the ExperimentSubset is a flexible container for the efficient management of subsets. Availability and implementation ExperimentSubset package is available at Bioconductor: https://bioconductor.org/packages/ExperimentSubset/ and Github: https://github.com/campbio/ExperimentSubset. Supplementary information Supplementary data are available at Bioinformatics online.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (12) ◽  
pp. 956-965 ◽  
Author(s):  
Stefano Pallanti ◽  
Silvia Bernardi ◽  
Leonardo Quercioli ◽  
Concetta DeCaria ◽  
Eric Hollander

ABSTRACTObjectiveAcute administration of the partial serotonin (5-HT) agonist meta-chlorophenylpi-perazine (m-CPP), that is used also as a street drug, has been reported to induce a “high” and craving response in various impulsive and sub-stance addiction disorders.IntroductionTo clarify altered 5-HT metabolism in pathological gamblers and to explore the specific role of serotonergic system in non substance addictions, we assessed behavioral (“high” and “craving”) and neuroendocrine (prolactin and cortisol) responses to an oral single dose of m-CPP and placebo in pathological gamblers and matched controls. Moreover, the relationship between neuroendocrine outcome and clinical severity has been assessed.MethodTwenty-six pathological gamblers and 26 healthy control subjects enter a double-blind, placebo-controlled-crossed administration of orally dose m-CPP 0.5 mg/kg. Outcome measures included prolactin and cortisol levels, gambling severity, mood, craving and “high” scales.ResultsPathological gamblers had significantly increased prolactin response compared to controls at 180 minutes and at 210 minutes post–administration. Greater pathological gamblers severity correlated with increased neuroendocrine responsiveness to m-CCP, suggesting greater 5-HT dysregulation. Pathological gambling patients had a significantly increased “high” sensation after m-CPP administration compared with control.ConclusionThese results provide additional evidence for 5-HT disturbance in pathological gamblers and they support the hypotheses that the role of the 5-HT dysfunction related to the experience of “high” might represent the path-way that leads to dyscontrolled behavior in patho-logical gamblers. Furthermore, the “high” feeling induced by m-CPP in pathological subjects may represent a marker of vulnerability to both behav-ioral and substance addictions.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1060.2-1060
Author(s):  
T. Suto ◽  
K. Von Dalwigk ◽  
A. Platzer ◽  
B. Niederreiter ◽  
T. M. Karonitsch

Background:TNF-mediated fibroblast-like synoviocyte (FLS) activation is important for inflammation and joint destruction in rheumatoid arthritis (RA). The role of TNF-receptor 1 (TNFR1) in FLS activation has thoroughly been characterized. The functions of TNFR2 are, however, largely unknown.Objectives:To investigate the contribution of TNFR2 to the TNF-mediated activation of FLS.Methods:RA-FLS were transfected with TNFR2-targeting siRNA pools and transcriptional changes were determined by RNA-seq. QPCR, ELISA and immunoblotting were used to confirm the RNA-seq results and to gain insights into the pathways that regulate TNFR2-mediated changes in FLS.Results:TNF stimulation of FLS resulted in a strong upregulation of proinflammatory cytokines, chemokines, tissue-degrading enzymes and other genes that are associated with synovial inflammation in RA. Silencing of TNFR2 markedly diminished the TNF-response of RA-FLS. Especially, “interferon”-stimulated-genes (ISGs) including putative master regulators of joint inflammation, such as the CXCR3 chemokines CXCL9, CXCL10 and CXCL11 were affected by the knockdown of TNFR2. Consistently, immunoblots showed that TNFR2 was required for the TNF-induced phosphorylation of the transcription factor STAT1, which is known to mediate the transcription of ISGs, such as CXCR3 chemokines.Conclusion:TNFR2 regulates proinflammatory gene expression in RA-FLS via STAT1 and thereby contributes to the detrimental effects of TNF in synovial joint inflammation.Disclosure of Interests:None declared


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kun Tan ◽  
Samantha H Jones ◽  
Blue B Lake ◽  
Jennifer N Dumdie ◽  
Eleen Y Shum ◽  
...  

The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rebekka Wegmann ◽  
Marilisa Neri ◽  
Sven Schuierer ◽  
Bilada Bilican ◽  
Huyen Hartkopf ◽  
...  

2019 ◽  
Vol 78 (10) ◽  
pp. 1379-1387 ◽  
Author(s):  
Eleanor Valenzi ◽  
Melissa Bulik ◽  
Tracy Tabib ◽  
Christina Morse ◽  
John Sembrat ◽  
...  

ObjectivesMyofibroblasts are key effector cells in the extracellular matrix remodelling of systemic sclerosis-associated interstitial lung disease (SSc-ILD); however, the diversity of fibroblast populations present in the healthy and SSc-ILD lung is unknown and has prevented the specific study of the myofibroblast transcriptome. We sought to identify and define the transcriptomes of myofibroblasts and other mesenchymal cell populations in human healthy and SSc-ILD lungs to understand how alterations in fibroblast phenotypes lead to SSc-ILD fibrosis.MethodsWe performed droplet-based, single-cell RNA-sequencing with integrated canonical correlation analysis of 13 explanted lung tissue specimens (56 196 cells) from four healthy control and four patients with SSc-ILD, with findings confirmed by cellular indexing of transcriptomes and epitopes by sequencing in additional samples.ResultsExamination of gene expression in mesenchymal cells identified two major, SPINT2hi and MFAP5hi, and one minor, WIF1hi, fibroblast populations in the healthy control lung. Combined analysis of control and SSc-ILD mesenchymal cells identified SPINT2hi, MFAP5hi, few WIF1hi fibroblasts and a new large myofibroblast population with evidence of actively proliferating myofibroblasts. We compared differential gene expression between all SSc-ILD and control mesenchymal cell populations, as well as among the fibroblast subpopulations, showing that myofibroblasts undergo the greatest phenotypic changes in SSc-ILD and strongly upregulate expression of collagens and other profibrotic genes.ConclusionsOur results demonstrate previously unrecognised fibroblast heterogeneity in SSc-ILD and healthy lungs, and define multimodal transcriptome-phenotypes associated with these populations. Our data indicate that myofibroblast differentiation and proliferation are key pathological mechanisms driving fibrosis in SSc-ILD.


Sign in / Sign up

Export Citation Format

Share Document