scholarly journals Cardiac Rhythm and Molecular Docking Studies of Ion Channel Ligands with Cardiotoxicity in Zebrafish

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 566
Author(s):  
Bonifasius Putera Sampurna ◽  
Fiorency Santoso ◽  
Jia-Hau Lee ◽  
Wen-Hao Yu ◽  
Chin-Chung Wu ◽  
...  

Safety is one of the most important and critical issues in drug development. Many drugs were abandoned in clinical trials and retracted from the market because of unknown side effects. Cardiotoxicity is one of the most common reasons for drug retraction due to its potential side effects, i.e., inducing either tachycardia, bradycardia or arrhythmia. The zebrafish model could be used to screen drug libraries with potential cardiotoxicity in a high-throughput manner. In addition, the fundamental principles of replacement, reduction, and refinement of laboratory animal usage, 3R, could be achieved by using zebrafish as an alternative to animal models. In this study, we used a simple ImageJ-based method to evaluate and screen 70 ion channel ligands and successfully identify six compounds with strong cardiotoxicity in vivo. Next, we conducted an in silico-based molecular docking simulation to elucidate five identified compounds that might interact with domain III or domain IV of the Danio rerio L-type calcium channel (LTCC), a known pharmaceutically important target for arrhythmia. In conclusion, in this study, we provide a web lab and dry lab combinatorial approach to perform in vivo cardiotoxicity drug screening and in silico mechanistic studies.

2020 ◽  
Vol 20 (3) ◽  
pp. 223-235
Author(s):  
Pooja Shah ◽  
Vishal Chavda ◽  
Snehal Patel ◽  
Shraddha Bhadada ◽  
Ghulam Md. Ashraf

Background: Postprandial hyperglycemia considered to be a major risk factor for cerebrovascular complications. Objective: The current study was designed to elucidate the beneficial role of voglibose via in-silico in vitro to in-vivo studies in improving the postprandial glycaemic state by protection against strokeprone type 2 diabetes. Material and Methods: In-Silico molecular docking and virtual screening were carried out with the help of iGEMDOCK+ Pymol+docking software and Protein Drug Bank database (PDB). Based on the results of docking studies, in-vivo investigation was carried out for possible neuroprotective action. T2DM was induced by a single injection of streptozotocin (90mg/kg, i.v.) to neonates. Six weeks after induction, voglibose was administered at the dose of 10mg/kg p.o. for two weeks. After eight weeks, diabetic rats were subjected to middle cerebral artery occlusion, and after 72 hours of surgery, neurological deficits were determined. The blood was collected for the determination of serum glucose, CK-MB, LDH and lipid levels. Brains were excised for determination of brain infarct volume, brain hemisphere weight difference, Na+-K+ ATPase activity, ROS parameters, NO levels, and aldose reductase activity. Results: In-silico docking studies showed good docking binding score for stroke associated proteins, which possibly hypotheses neuroprotective action of voglibose in stroke. In the present in-vivo study, pre-treatment with voglibose showed a significant decrease (p<0.05) in serum glucose and lipid levels. Voglibose has shown significant (p<0.05) reduction in neurological score, brain infarct volume, the difference in brain hemisphere weight. On biochemical evaluation, treatment with voglibose produced significant (p<0.05) decrease in CK-MB, LDH, and NO levels in blood and reduction in Na+-K+ ATPase, oxidative stress, and aldose reductase activity in brain homogenate. Conclusion: In-silico molecular docking and virtual screening studies and in-vivo studies in MCAo induced stroke, animal model outcomes support the strong anti-stroke signature for possible neuroprotective therapeutics.


2020 ◽  
Vol 3 (4) ◽  
pp. 989-1000
Author(s):  
Mustapha Abdullahi ◽  
Shola Elijah Adeniji

AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Abdullahi Bello Umar ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

Abstract Background The resistance of V600E-BRAF to the vemurafenib and the side effects of the identified inhibitors trigger the research for a novel and more potent anti-melanoma agents. In this study, virtual docking screening along with pharmacokinetics ADMET and drug-likeness predictions were combined to evaluate some 4-(quinolin-2-yl)pyrimidin-2-amine derivatives as potent V600E-BRAF inhibitors. Results Some of the selected compounds exhibited better binding scores and favorable interaction with the V600E-BRAF enzyme. Out of the screened compounds, two most potent (5 and 9) having good Rerank scores (− 128.011 and − 126.258) emerged as effective and potent V600E-BRAF inhibitors that outperformed the FDA-approved V600E-BRAF inhibitor (vemurafenib, − 118.607). Thus, the molecular docking studies revealed that the studied compounds showed competing for inhibition of V600E-BRAF with vemurafenib at the binding site and possessed better pharmacological parameters based on the drug-likeness rules filters for the oral bioavailability, and ADMET risk parameters. Conclusion The docking analysis, drug-likeness rules filters, and ADMET study identified compounds (5 and 9) as the best hits against V600E-BRAF kinase with enhanced pharmacological properties. This recommends that these compounds may be developed as potent anti-melanoma agents.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4562 ◽  
Author(s):  
Yajun Zheng ◽  
Xian Wang ◽  
Yongliang Zhuang ◽  
Yan Li ◽  
Hailong Tian ◽  
...  

Albumin is the major fraction of quinoa protein that is characterized as having high nutritional value. However, until now, scant information is available on the bioactivity of quinoa albumin or its hydrolysates. To promote its usage, we extracted albumin in this study from quinoa bran assisted with cellulase and hemicellulose, and hydrolyzed it by alcalase and trypsin to produce bioactive peptides. The hydrolysates (QBAH) were purified by gel filtration and reversed-phase high-performance liquid chromatography (RP-HPLC), followed by identification using liquid chromatography–mass spectrometry (LC-MS/MS). Furthermore, based on in silico analysis, one angiotensin-I converting enzyme (ACE)-inhibitory and antioxidant peptide, RGQVIYVL (946.6 Da), and two antioxidant peptides, ASPKPSSA (743.8 Da), and QFLLAGR (803.5 Da), from QBAH were synthesized. RGQVIYVL showed a high ACE-inhibitory activity (IC50 = 38.16 μM) with competitive mode of inhibition, and showed significant antihypertensive effect in spontaneously hypertensive rats at a concentration of 100–150 mg/kg body weight (bw). Molecular docking simulation showed that it could interact with the active ACE site via hydrogen bonds with high binding power. Moreover, RGQVIYVL, ASPKPSSA, and QFLLAGR all demonstrated high ·OH scavenging activity (IC50 = 61.69–117.46 μM), ABTS+ scavenging activity (58.29–74.28%) and Fe2+ chelating ability (32.54–82.48% at 0.5 mg/mL). They could also retain activity after gastrointestinal enzyme digestion. These results indicate that quinoa albumin is a potential source of bioactive peptides possessing antioxidant and ACE-inhibitory activities.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 463.1-463
Author(s):  
Y. M. S. Pires ◽  
M. C. Leal de Moura ◽  
W. Amorim Dias ◽  
V. D. Pimentel

Background:The pharmacological approaches of chronic pain are a challenge in the clinical context. Currently, only palliative treatments are performed. The α-phellandrene (α-phel) is a cyclic monoterpene found in essential oils of aromatic plants, which presents several biological activities, such as antinociceptive, antihyperalgesic and immunostimulant.1,2Objectives:This study aimed to investigate the action of α-phellandrene in chronic pain throughin silicoandin vivoapproaches, aiming to develop a new therapeutic option for painful conditions, reducing analgesic doses and side effects.Methods:The pharmacokinetic analysis of α-phel was performed by PreADMET online server. The software ACD/ChemSketch 14.0 was used to optimize the 3D structure of α-phel. Molecular docking was performed with the software AutoDock Tools 1.5.6 to evaluate the pharmacodynamics interactions of α-phel and opioid receptors.The mechanism of action of α-phel in chronic pain was analyzedin vivo. Ethics Committee of UFPI approved this project (protocol n° 305/17). Female Swiss mice (25-30 g) underwent partial sciatic nerve ligation surgery to induce neuropathy. The neuropathic mice (N=6) were pre-treated with Naloxone (2 mg/kg, i.p.) or Saline (10 mL/kg, p.o.). After 20 minutes, they were treated with α-phel (6,25 mg/kg, p.o.) or morphine (5 mg/kg, i.p.) and evaluated by Von Frey test.Results:The predicted pharmacokinetic parameters (Table 1) suggest good intestinal absorption and good permeability. Plasma protein binding is elevated, however, it is reversible and technological alternatives, such as carrier systems, can improve it. The α-phel does not inhibit CYP3A4, it indicates a minimal possibility of interactions with others drugs and adverse reactions.Table 1.Pharmacokinetic parameters of α-phelIDVALUEBBB7.17054Buffer_solubility_mg_L1227.08Caco223.4164CYP_2C19 and 2C9_inhibitionInhibitorCYP_2D6_inhibition_substrateNonCYP_3A4_inhibitionNonCYP_3A4_substrateWeaklyHIA100.00000MDCK267.707Pgp_inhibitionNonPlasma_Protein_Binding90.00000Pure_water_solubility141.466The structure of α-phel binding opioid receptors is shown in Figure 1. The lowest ligand-receptor binding energies were, respectively: -6.0 kca/mol, -6.6 kcal/mol and -7.4 kcal/mol for the interaction of α-phel with Mu, Kappa and Delta receptors. It indicates that α-phel has high affinity for all three opioid receptors, binding in a strong and stable way.Figure 1.Graphical 3D representation of the binding modes of α-phellandrene with opioid receptors: A - Mu; B - Kappa; C – DeltaThe analgesic potential of the substance was testedin vivoas well. It was observed that Naloxone, an opioid antagonist, significantly reversed the effect of α-phel, indicating that it displays antinociceptive and antihyperalgesic activity through opioid system.Conclusion:The monoterpene α-phel presents antinociceptive activity and reduces the sensitivity in chronic pain through the activation of opioid receptors.Thus,in vivoandin silicoresults indicate that α-phel is an analgesic opioid agonist. This work may guide further preclinical studies, since α-phel may be an important strategy to treat chronic pain, with fewer side effects, dependence and tolerance than conventional drugs.References:[1]Nascimento AF, Camara CA, Moraes MM, Ramos CS. Essential oil composition and acaricidal activity of Schinusterebinthifolius from Atlantic Forest of Pernambuco, Brazil against Tetranychusurticae. Natural product communications. 2012 Jan:7(1):129-132.[2]Piccinelli AC, Santos JA, Konkiewitz EC, et al. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinusterebinthifolius fruits in a neuropathic pain model. Nutritional neuroscience. 2015 Jul 1;18(5):217-24.Disclosure of Interests: :None declared


2021 ◽  
Vol 28 ◽  
Author(s):  
Surabhi Devaraj ◽  
Yew Mun Yip ◽  
Parthasarathi Panda ◽  
Li Lin Ong ◽  
Pooi Wen Kathy Wong ◽  
...  

Introduction: Feruloyl Sucrose Esters (FSEs) are a class of Phenylpropanoid Sucrose Esters (PSEs) widely distributed in plants. They were investigated as potential selective Alpha Glucosidase Inhibitors (AGIs) to eliminate the side effects associated with the current commercial AGIs. The latter effectively lowers blood glucose levels in diabetic patients but causes severe gastrointestinal side effects. Methods: Systematic structure-activity relationship (SAR) studies using in silico, in vitro and in vivo experiments were used to accomplish this aim. FSEs were evaluated for their in vitro inhibition of starch and oligosaccharide digesting enzymes α-glucosidase and α-amylase followed by in silico docking studies to identify the binding modes. A lead candidate, FSE 12 was investigated in an STZ mouse model. Results: All active FSEs showed desired higher % inhibition of α-glucosidase and desired lower inhibition of α-amylase in comparison to AGI gold standard acarbose. This suggests a greater selectivity of the FSEs towards α-glucosidase than α-amylase, which is proposed to eliminate the gastrointestinal side effects. From the in vitro studies, the position and number of the feruloyl substituents on the sucrose core, the aromatic ‘OH’ group, and the diisopropylidene bridges were key determinants of the % inhibition of α-glucosidase and α-amylase. In particular, the diisopropylidene bridges are critical for achieving inhibition selectivity. Molecular docking studies of the FSEs corroborates the in vitro results. The molecular docking studies further reveal that the presence of free aromatic ‘OH’ groups and the substitution at position 3 on the sucrose core are critical for the inhibition of both the enzymes. From the in vitro and molecular docking studies, FSE 12 was selected as a lead candidate for validation in vivo. The oral co-administration of FSE 12 with starch abrogated the increase in post-prandial glucose and significantly reduced blood glucose excursion in STZ-treated mice compared to control (starch only) mice. Conclusion: Our studies reveal the potential of FSEs as selective AGIs for the treatment of diabetes, with a hypothetical reduction of side effects associated with commercial AGIs.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


Sign in / Sign up

Export Citation Format

Share Document